
British Journal of Mathematics & Computer Science
4(16): XX-XX, 2014

SCIENCEDOMAIN international
www.sciencedomain.org

On Summable Bases in Banach Spaces

Mangatiana A. Robderai1∗
1Department of Mathematics, University of Botswana, Private Bag 0022, Gaborone, Botswana.

Original Research
Article

Received: 23 May 2014
Accepted: 13 June 2014
Published: 24 June 2014

Abstract
We introduce the notion of summable bases that naturally generalizes the notion of unconditional
sequence bases for Banach spaces. We shall be particularly interested in some classical results on
sequences and series in separable Banach spaces that carry over or naturally extend to the case
of non-separable Banach spaces.
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1 Introduction
The preponderant roles played by sequence bases in the study of the structure of Banach spaces
have been extensively studied and several results have been established by several authors (see
for example, [1],[2],[3] and references therein) many of which are believed to be in their final forms.
Undoubtedly, the most useful and widely studied special case of such sequence bases is that of
unconditional bases. The property that a basis is a sequence is quite irrelevant since the definition of
unconditional basis applies to any arbitrary countable family of elements of the Banach space. The
primary aim of this note is to introduce the more general notion of unconditional uncountable bases
which we shall simply term as summable basis. Such a generalization allows us to extend some
results and techniques of unconditional bases to the wider class of non separable Banach spaces.

The paper is organized as follows. In Section 2, we introduce and discuss the notion of summability
of functions taking values in Banach spaces. Several results related to unconditional convergence of
series are trivially generalized to the setting of the newly introduced notion. In Section 3, we show
that the class of Banach space valued summmable functions can be given the structure of a Banach
space. An extended version of the Dvortski-Rogers theorem [4] is obtained as an application. In
the final Section 4, we introduce and study the notion of summable bases and related properties.
Examples of Banach spaces having summable bases but failing to have sequence bases will be
given. We also give an extension of the notion of unconditional finite dimensional decomposition.
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2 Definition of Summability
For any study of unconditional bases in Banach spaces, a featured role must be reserved for the
unconditional convergence of series. A series

∑
n xn of elements of a Banach space X is to be

unconditionally convergent if the series
∑
n yn converges whenever the sequence n 7→ yn is a

rearrengement of the sequence n 7→ xn. There are several equivalent formulations of such a
definition (see for example [5]). In this section, we introduce the notion of summability of function
that generalizes the notion of unconditonal convergence of series.

In what follows, X is a normed vector space, Ω is an infinite set, 2Ω (resp. 2|Ω|) denotes the set
of all subsets (resp. finite subsets) of Ω. Given a function f : Ω→ X, we associate the set function

σf : 2|Ω| → X : A 7→ σf (A) =
∑
a∈A

f(a).

Since 2|Ω| is directed by containment ⊃, the function σf is a net. We denote by∑
Ω

f = lim
A∈(2|Ω|,⊃)

σf (A)

whether or not such limit exists. Note that by the property of net-limit, there can only exist at most
one such limit. For more details on net-limit, we refer the reader to [6].

We introduce the following definition.

Definition 2.1. Let X be a normed vector space. A function f : Ω → X is said to be summable if
the limit

∑
Ω f = limA∈(2|Ω|,⊃) σf (A) exists in X.

In other words, for every ε > 0 , there exists A0 ∈ 2|Ω| such that for every A ∈ 2|Ω|, A ⊃ A0, we
have

∥∥σf (A)−
∑

Ω f
∥∥ < ε.

It is not difficult to see that when Ω consists of the positive integrers, then f is summable if and
ony if the series

∑∞
i=1 f(i) is unconditionally convergent.

We also have the following proposition:

Proposition 2.1. If f : Ω → X is summable, then for every ε > 0, there exists A0 ∈ 2|Ω| such that∥∥∑
b∈B f(b)

∥∥ < ε for every B ∈ 2|Ω| that does not intersect A0,

Proof. Fix ε > 0. Let A0 ∈ 2|Ω| be such that for every 2|Ω| 3 A ⊃ A0,
∥∥σf (A)−

∑
Ω f
∥∥ < ε/2. Fix

such a finite subset A. Then we also have for every B ∈ 2|Ω| that does not intersect A0, A∪B ⊃ A0,
and therefore

∥∥σf (A ∪B)−
∑

Ω f
∥∥ < ε/2. It follows that∥∥∥∥∥∑

b∈B

f(b)

∥∥∥∥∥ = ‖σf (A ∪B)− σf (A)‖ ≤

∥∥∥∥∥σf (A ∪B)−
∑
Ω

f

∥∥∥∥∥+

∥∥∥∥∥σf (A)−
∑
Ω

f

∥∥∥∥∥ < ε.

The proof is complete.

Definition 2.2. LetX be a normed vector space. A function f : Ω→ X is said to satisfy the Cauchy
summability criterion if for every ε > 0, there exists a finite subset A0 of N such that∥∥∥∥∥∑

n∈A

f(n)−
∑
n∈B

f(n)

∥∥∥∥∥ < ε

whenever A,B ∈ 2|Ω|, A,B ⊃ A0 .
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We notice that for every A,B ∈ 2|Ω|,∥∥∥∥∥∑
n∈A

f(n)−
∑
n∈B

f(n)

∥∥∥∥∥ =

∥∥∥∥∥∥
∑

n∈A4B

f(n)

∥∥∥∥∥∥
where A4 B is the symmetric difference of A and B. Clearly, A4 B ∈ 2|Ω|. The following fact is
then easily derived.

Proposition 2.2. A function f : Ω → X satisfies the Cauchy summability criterion if and only if for
every ε > 0 there exists a finite subset A0 of Ω such that

∥∥∑
b∈B f(b)

∥∥ < ε for every B ∈ 2|Ω| that
does not intersect A0.

We have already seen in Proposition 2.1 that every summable function satisfies the Cauchy
summability criterion. As expected, the converse is also true if X is a Banach space. This follows
from the general well known fact that for nets taking values in a Banach space, the Cauchy net
condition is equivalent to the net convergence (see for example [6]). Clearly, the Cauchy summability
condition introduced in Definition 2.2 corresponds exactly to the Cauchy criterion for the net 2|Ω| 3
A 7→ σf (A) ∈ X. Therefore we have:

Proposition 2.3. Let X be a Banach space. A function f : Ω→ X satisfies the Cauchy summability
criterion if and only if it is summable.

The following are other useful characterizations of summability for Banach space valued functions.

Theorem 2.1. Let X be a Banach space and let f : Ω→ X. The following conditions are equivalent:

1. f is summable.

2. For any injection ω : Γ→ Ω, the function γ 7→ f(ω(γ)) is summable.

3. For every ε : Ω→ {−1, 1}, the function ω 7→ ε(ω)f(ω) is summable.

4. For every bounded function φ : Ω→ K, the function ω 7→ φ(ω)f(ω) is summable.

Proof. It is clear that 4⇒ 3⇒ 1 and also 2⇒ 1. To see that 1⇒ 2, suppose f is summable and let
ε > 0 . Then there exists a finite subset A0 of Ω such that ‖σf (A)‖ < ε whenever A ∈ 2|Ω| is disjoint
from A0. Let ω : Γ→ Ω be an injective mapping. By injectivity of ω, we can choose B0 ∈ 2|Γ| so that
ω(B0) ⊃ A0 . Again by injectivity of ω, if B∩B0 = ∅, then ω(B)∩ω(B0) = ∅ and therefore ω(B)∩A0.
It follows that whenever B ∈ 2|Ω| is disjoint from A0 we have∥∥∥∥∥∑

γ∈B

f(ω(γ))

∥∥∥∥∥ = ‖σf (ω(B))‖ < ε.

Hence, the function γ 7→ f(ω(γ)) is summable. We have established that 1⇒ 2. To show that 2⇒ 3,
let Γ1 = ε−1(1) and Γ−1 = ε−1(−1). Then Ω = Γ1 ∪ Γ−1 and Γ1 ∩ Γ−1 = ∅. Let ω1 : Γ1 → Ω and
ω−1 : Γ−1 → Ω be respectively, the canonical injection respectively of Γ1 and Γ−1 into Ω. Then by 2

γ ∈ Γ1 7→ f(ω1(γ)) = f(γ)

γ ∈ Γ−1 7→ f(ω−1(γ)) = f(γ)

are both summable. It follows that

γ 7→ ε(γ)f(γ) = 1Γ1(γ)f(γ) + 1Γ−1(γ)f(γ)

is summable.
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3⇒ 4 We give the proof for real case. The changes for complex spaces are straightforward. Fix
A ∈ 2|Ω|. Pick an x∗ ∈ X∗ so that∑

ω∈A

φ(ω)x∗(f(ω)) =

∥∥∥∥∥∑
ω∈A

φ(ω)f(ω)

∥∥∥∥∥ .
Let ε : Ω→ {−1, 1} be defined by ε(ω) = 1 if x∗(f(ω)) ≥ 0 and ε(ω) = −1 if x∗(f(ω)) < 0. Then∥∥∥∥∥∑

ω∈A

φ(ω)f(ω)

∥∥∥∥∥ ≤∑
ω∈A

|φ(ω)| |x∗(f(ω))| ≤ sup
ω∈Ω
|φ(ω)|

∑
ω∈A

ε(ω)x∗(f(ω)) (2.1)

≤ sup
ω∈Ω
|φ(ω)|x ∗

(∑
ω∈A

ε(ω)f(ω)

)
≤ sup
ω∈Ω
|φ(ω)|

∥∥∥∥∥∑
ω∈A

ε(ω)f(ω)

∥∥∥∥∥ (2.2)

The desired result follows. This completes the proof.

Corollary 2.2. The restriction of summable function defined on set Ω to any subset of Ω is summable.

Theorem 2.3. Let X be a Banach space and let f : Ω → X be summable function, then for any
injection $ : Γ→ Ω, ∑

Ω

f =
∑

Γ

f ◦$.

Proof. Assume that ε > 0. Choose B1 ∈ 2|Γ| such that∥∥∥∥∥∑
Γ

f ◦$ −
∑
γ∈B1

f($(γ))

∥∥∥∥∥ < ε

3
.

Choose A1 ∈ 2|Ω| such that A1 ⊃ $(B1) and∥∥∥∥∥∑
Ω

f −
∑
ω∈A1

f(ω)

∥∥∥∥∥ < ε

3
.

By injectivity, we can choose B2 ∈ 2|Γ| such that $(B2) ⊃ A1 and∥∥∥∥∥∑
Γ

f ◦$ −
∑
γ∈B2

f($(γ))

∥∥∥∥∥ < ε

3
.

Choose A2 ∈ 2|Ω| such that A2 ⊃ $(B2) and∥∥∥∥∥∑
Ω

f −
∑
ω∈A2

f(ω)

∥∥∥∥∥ < ε

3
.

Continuing in this way, we construct two sequences n 7→ An and n 7→ Bn such that

$(Bn+1) ⊃ An ⊃ $(Bn)∥∥∥∥∥∑
Γ

f ◦$ −
∑
γ∈Bn

f($(γ))

∥∥∥∥∥ < ε

3
and

∥∥∥∥∥∑
Ω

f −
∑
ω∈An

f(ω)

∥∥∥∥∥ < ε

3
. (2.3)

Now we let H =
⋃
n∈NBn and define $′ : H → Ω by $′(η) = $(η). By our hypothesis, the function

η 7→ f($′(η)) is also summable. On the other hand, it follows from (2.3) that∥∥∥∥∥∑
Γ

f ◦$ −
∑
γ∈Bn

f($′(γ))

∥∥∥∥∥ < ε

3
and

∥∥∥∥∥∑
Ω

f −
∑
γ∈Bn

f($′(γ))

∥∥∥∥∥ < ε

3
.

By the uniqueness of limit, we must have
∑

Γ f ◦$ =
∑

Ω f as to be shown.
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We end this section by noticing that the above defined summability property corresponds exactely
to the notion of integrability introduced in [7] with respect to the size function σ : 2Ω → [0,∞] defined
by

σ(A) =

{
0 if A = ∅
1 if A 6= ∅.

3 Spaces of Summable Functions
We shall denote by Σ(Ω, X) the set of all X-valued summable functions defined on the set Ω. It
follows immediately from the linearity of net-limits that Σ(Ω, X) is a vector space. It is also clear that
if the limit

∑
Ω f = limA∈(2|Ω|,⊃) σf (A) exists in X, then

‖f‖Σ := sup
{
‖σf (A)‖X : A ∈ 2|Ω|

}
<∞.

It then follows from the linearity of the function f 7→ σf (A) and the properties of the supremum that
the map f 7→ ‖f‖Σ defines a norm on Σ(Ω, X).

Theorem 3.1. If X is a Banach space, the space Σ(Ω, X) is complete when endowed with the norm
f 7→ ‖f‖Σ .

Proof. Let n 7→ fn be a Cauchy sequence in Σ(Ω, X). Fix ε > 0, and let Nε > 0 be such that for
m,n > Nε in N,

‖fn − fm‖Σ = sup
{
‖σfn−fm(A)‖ : A ∈ 2|Ω|

}
< ε. (3.1)

In particular, if we consider the singleton {ω} ∈ 2|A|, then for m,n > Nε in N,

‖fn(ω)− fm(ω)‖ < ε.

We infer that the sequence n 7→ fn(ω) is Cauchy in X. Since X is a Banach space, we can define a
function

ω ∈ Ω 7→ X 3 f(ω) = lim
n→∞

fn(ω).

On the other hand, since fn, fm ∈ Σ(Ω, X), there exist An, Am ∈ 2|Ω| such that∥∥∥∥∥σfn(A)−
∑
Ω

fn

∥∥∥∥∥ ∨
∥∥∥∥∥σfm(A)−

∑
Ω

fm

∥∥∥∥∥ < ε whenever A ⊃ An ∪Am,

Combining these inequality with (3.1), it follows that for m,n > Nε in N and for every A ⊃ An ∪ Am,
we have∥∥∥∥∥∑

Ω

fn −
∑
Ω

fm

∥∥∥∥∥ ≤
∥∥∥∥∥σfn(A)−

∑
Ω

fn

∥∥∥∥∥+ ‖σfn−fm(A)‖+

∥∥∥∥∥σfm(A)−
∑
Ω

fm

∥∥∥∥∥ < 3ε.

This proves that the sequence n 7→
∑

Ω fn is Cauchy in X, and thus converges to, say a ∈ X.
Now fix A ∈ 2|Ω|. Since for each ω ∈ A, f(ω) = limn→∞ fn(ω), there exists Nω > Nε such that

form,n > Nω in N,
‖fn(ω)− fm(ω)‖ ≤ ε

|A|
where |A| is the number of elements in A. It follows that

‖σfn−fm(A)‖ ≤
∑
ω∈A

‖fn(ω)− fm(ω)‖ ≤ ε.
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If we let m → ∞, we obtain ‖σfn−f (A)‖ ≤ ε. Since a = limm→∞
∑

Ω fm, there exists N >
sup {Nω : ω ∈ A} such that

∥∥∑
Ω fm − a

∥∥ < ε wheneverm > N. Thus for n,m > N,

‖σf (A)− a‖ ≤ ‖σfm−f (A)‖+

∥∥∥∥∥σfm(A)−
∑
Ω

fm

∥∥∥∥∥+

∥∥∥∥∥∑
Ω

fm − a

∥∥∥∥∥ < 3ε.

Since ε > 0 is arbitrary, this shows that f ∈ Σ(Ω, X) and that
∑

Ω f = a.

We say that a function f : Ω → X is norm-summable if the scalar function ‖f‖Ω → [0,∞) is
summable. It is an obvious consequence of the triangle inequality and the Cauchy criterion that in
a Banach space every norm-summable function is summable. It turns out that the converse is also
true.

Theorem 3.2. If every norm-summable function with values in a normed space X is summable, then
X is a Banach space.

Proof. Let n → xn be a Cauchy sequence in X. Let k 7→ xnk be a subsequence such that ‖xnk‖ <
2−1 and that for all k ≥ 2, we have

∥∥xnk − xnk−1

∥∥ < 2−k. It follows that the function f : k 7→
xnk − xnk−1 is norm-summable. By our hypothesis, it is summable. This implies that the sequences
k 7→

∑k
i=1 f(i) = xnk converges to an element x in X. Therefore the sequence n 7→ xn also

converges to x. This completes the proof.

We shall denote by Σ1(Ω, X) the vector space equipped with the norm

‖f‖Σ1 = sup

{∑
a∈A

‖f(a)‖ : A ∈ 2|Ω|
}
.

It is then easy to verify that for the case X = K, the map T : `∞(Ω,K) →
(
Σ1(Ω,K)

)∗ defined by
Tφ(f) = limA∈(2|Ω|,⊃)

∑
a∈A φ(a)f(a) is a linear isometry. Furthermore, if ξ ∈

(
Σ1(Ω,K)

)∗
, then the

function φ : Ω → K defined by φ(ω) = ξ(1{ω}) is an element of `∞(Ω,K) and Tφ = ξ. We infer that(
Σ1(Ω,K)

)∗ ∼= `∞(Ω,K).

It is worth noticing that when Ω = N, then Σ1(N,K) = `1, and more generally, Σ1(N, X) = `1(X)
whenever X is a finite dimensional Banach space. We end this section with an extension of the
Dvoretski-Rogers Theorem.

Theorem 3.3. Let X be an infinite dimensional Banach space and Ω an infinite set. Then there exists
a function f : Ω→ X which is summable but not norm-summable.

Proof. Since X is infinite dimensional, by the Dvoretski-Rogers theorem there exists a sequence
n 7→ xn of elements ofX such that the series

∑
n xn converges, say to x, while

∑
n ‖xn‖ = ∞. We

write Ω as disjoint union of countably many sets Un. Define

f(t) =

{
xn if t ∈ Un, n ∈ N
0 otherwise.

Then σ‖f‖(A) =
∑
ni
‖xni‖ = ∞, that is, ‖f‖ /∈ Σ(Ω, [0,∞)). On the other hand, given ε > 0, there

exists a finite subset Nε ⊂ N such that ∥∥∥∥∥∥
∑

n≤K∪Nε

xn − x

∥∥∥∥∥∥ < ε (3.2)
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for every finite subset K of N. By the Cauchy criterion, there exists N0 ≥ maxNε such that for
every finite subset N of N \ {1, 2, . . . , N0}, we have∥∥∥∥∥∑

n∈N

xn

∥∥∥∥∥ < ε. (3.3)

Now let A0 = {n = 1, . . . , Nε} . Then for every finite subset A ⊃ A0 there exists a finite subset
{n1, n2, . . . , nk} of N \ {1, 2, . . . , Nε}, such that σf (A) =

∑
n≤Nε xn +

∑k
j=1 xnj . It follows that

‖σf (A)− x‖ ≤

∥∥∥∥∥∥
∑
n≤Nε

xn − x

∥∥∥∥∥∥+

∥∥∥∥∥
k∑
j=1

xnj

∥∥∥∥∥ . (3.4)

By combining (3.2), (3.3), and (3.4), we conclude that

‖σf (A)− x‖ < 2ε.

This shows that f ∈ Σ(Ω, X).

4 Summable Bases
Recall that a sequence n 7→ xn in a Banach space X is called a Schauder basis if for each x ∈ X
there is a unique sequence of scalar n 7→ λn such that x = limn

∑n
i=1 λixi. On the other hand, if

f : Ω→ X is a summable function then Property 4. of Theorem 2.1 ensures us that∑
Ω

φf = lim
A∈(2|Ω|,⊃)

∑
a∈A

φ(a)f(a) (4.1)

represents an element of X for every bounded function φ : Ω→ K.
Let Sf denotes the linear space of all scalar functions φ : Ω → K for which the limit in (4.1)

represents an element of X. Then the expression

‖φ‖Sf := ‖φf‖Σ = sup
{
‖σφf (A)‖X : A ∈ 2|Ω|

}
evidently defines a seminorm on Sf . It is then quickly seen that∥∥∥∥∥∑

Ω

φf

∥∥∥∥∥
X

≤ ‖φ‖Sf .

We claim that (Sf , ‖·‖Sf ) is complete. Let n 7→ φn be a Cauchy sequence in Sf . Since

|φn(ω)− φm(ω)| ‖f(ω)‖ ≤ ‖φn − φm‖Sf ,

for each ω ∈ Ω, the sequence n 7→ φn(ω) is Cauchy in X. The space X being a Banach space, we
can define a function ω 7→ φ(ω) = limn φn(ω). Given ε > 0, let N > 0 be so chosen that

‖φn − φm‖Sf < ε

whenever n,m > N. Thus when n,m > N,∥∥∥∥∥∑
a∈A

(φn(a)− φm(a)) f(a)

∥∥∥∥∥ < ε
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for each A ∈ 2|Ω|. Letting n→∞, we have for m > N∥∥∥∥∥∑
a∈A

(φ(a)− φm(a)) f(a)

∥∥∥∥∥ < ε.

Since φm ∈ Sf , there exists A0 ∈ 2|Ω| such that for B ∈ 2|Ω|, B disjoint from A0,∥∥∥∥∥∑
b∈B

φm(b)f(b)

∥∥∥∥∥ < ε.

It follows that for m > N∥∥∥∥∥∑
b∈B

φ(b)f(b)

∥∥∥∥∥ ≤
∥∥∥∥∥∑
b∈B

(φ(b)− φm(b)) f(b)

∥∥∥∥∥+

∥∥∥∥∥∑
b∈B

φm(b)f(b)

∥∥∥∥∥ < 2ε.

Thus φ ∈ Sf and φ = limn φn. This proves our claim.

If we assume that f(ω) 6= 0 for all ω ∈ Ω, then ‖·‖Sf is a norm on X and hence (Sf , ‖·‖Sf ) is a
Banach space; the linear operator T : (Sf , ‖·‖Sf ) → (X, ‖·‖X) given by Tφ =

∑
Ω φ is one-to-one.

In what follows, we shall always assume that f(ω) 6= 0 for all ω ∈ Ω.

The above discussions prompt us to introduce the following definition:

Definition 4.1. Let X be a Banach space. A function f : Ω→ X is called a summable basis for X
if for every x ∈ X, there exists a unique function φ : Ω→ K such that

x = lim
A∈(2|Ω|,⊃)

∑
a∈A

φ(a)f(a).

A function f that is a summable basis for the closed linear span of its range is called a basic function.

For case of Ω = N, the notions of basic function and summable basis exactly correspond to the
notion of respectively unconditional basic sequence and unconditional basis. It is worth remarking
that as opposed to the particular case of sequence basis, the existence of a summable basis does
not require the separability of the Banach space in consideration. However, many results related to
sequence bases carry over by obvious mimicries to the setting of summable bases.

It follows from the foregoing discussion and from the open mapping theorem that if f is a
summable basis for X, then the linear operator

T : (Sf , ‖·‖Sf )→ (X, ‖·‖X)

is an isomorphism. Consequently,

Proposition 4.1. LetX be a Banach space with summable basis f : Ω→ X. Then for everyA ∈ 2|Ω|,
the natural linear projection PA : X → X, defined by

PA(
∑
Ω

φf) =
∑
a∈A

φ(a)f(a)

is continuous.

A noteworthy corollary is the following.

Proposition 4.2. Let X be a Banach space with summable basis f : Ω → X. Then the coefficient
functionals {f∗ω : ω ∈ Ω} defined by f∗ω(

∑
Ω

φf) = φ(ω) are continuous linear functionals.
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It follows that if f : Ω→ X is a summable basis for X, then for each x ∈ X, we have

x =
∑
Ω

f∗(·)(x)f = lim
A∈(2|Ω|,⊃)

∑
a∈A

f∗(a)(x)f(a).

The following is a basic test for checking whether a function f is a basic function.

Proposition 4.3. Let X be a Banach space, let f : Ω → X be a summable function. Then the
following are equivalent

1 f is a basic function.

2 There exists a constant K > 0 so that for every bounded function φ : Ω → K, for every pair
A,B of finite subsets of Ω, A ⊃ B implies

‖σφf (B)‖ ≤ K ‖σφf (A)‖ .

The constant K shall be called the summable basis constant.

Proof. Assume that f is a basis function for Y =span{f(ω) : ω ∈ Ω}. Then for every A ∈ 2|Ω|, the

natural projection PA is continuous on Y. Since sup{

∥∥∥∥∥PA∑
Ω

φf

∥∥∥∥∥ : A ∈ 2|Ω|} = ‖φ‖Sf <∞, it follows

from the Banach-Steinhaus theorem that sup
{
‖PA‖ : A ∈ 2|Ω|

}
= K < ∞. Thus if A ⊃ B in 2|Ω|

and
∑
Ω

φf ∈ Sf , then

‖σf (B)‖ =

∥∥∥∥∥PB(
∑
Ω

φf)

∥∥∥∥∥ =

∥∥∥∥∥PBPA(
∑
Ω

φf)

∥∥∥∥∥ = ‖PB(σf (A))‖ ≤ ‖PB‖ ‖(σf (A))‖ .

The desired inequality follows.
Conversely, assume that 2 holds. It follows that for ω ∈ A ∈ 2|Ω|

|φ(ω)| ‖f(ω)‖ ≤ K

∥∥∥∥∥∑
a∈A

φ(a)f(a)

∥∥∥∥∥ ≤ K
∥∥∥∥∥∑

Ω

φf

∥∥∥∥∥
Sf

.

Therefore,
∑
Ω

φf = 0 implies φ = 0. This proves the uniqueness of the function φ such that

∑
Ω

φf = lim
A∈(2|Ω|,⊃)

∑
a∈A

φ(a)f(a).

Condition 2 also ensures us that for each A ∈ 2|Ω|, the projection given by

PA(
∑
ω∈Ω

λωf) =
∑
a∈A

λaf(a)

is a bounded linear operator from span {f(ω) : ω ∈ Ω} onto itself. It follows that each PA has a
continuous extension to Y still denoted by PA. Let x ∈ Y and fix ε > 0. Then there is xA =

∑
a∈A

λaf(a)

for some A ∈ 2|Ω| and where λa ∈ K, such that ‖x− xA‖ < ε. Then for every A ⊂ B ∈ 2|Ω|, we have

‖x− PB(x)‖ ≤ ‖x− xA‖+ ‖xA − PBxA‖+ ‖PB(xA − x)‖ ≤ (1 +K)ε.

It follows that
x = lim

B∈(2|Ω|,⊃)
PB(x) = lim

B∈(2|Ω|,⊃)

∑
b∈B

f∗(b)(x)f(b).
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Example 4.1. The indicator functions of finite subsets of a set Ω form a summable basis for the
Banach space Σ(Ω,K).

Proof. Let f : 2|Ω| → Σ(Ω,K) be defined by f(A) = 1A, the indicator function of a finite subset A
in Ω. Let x ∈ Σ(Ω,K). Let M =

∑
Ω x. The function φ : 2|Ω| → K defined by φ(A) = 1

M

∑
a∈A

x(a) is

bounded. It follows from the property 4. of Theorem 2.1 that the function A 7→ φ(A)f(A) is summable
and it is easily checked that

x = lim

Γ∈
(

2|2|Ω||,⊃
)∑
A∈Γ

φ(A)f(A).

The proof is complete.

For the next example, let (Ω, µ) be a finite measure space. We denote by Π the set of all subsets
of Ω of positive measure. Define the mesh or the norm of Γ ∈ 2|Π| to be ‖Γ‖ = max{µ(Ii) : Ii ∈ Γ}. If
Γ,∆ ∈ Π(A,Σ), we say that ∆ is a refinement of Γ and we write ∆ � Γ if ‖∆‖ ≤ ‖Γ‖ and

⊔
Γ ⊂

⊔
∆.

It is readily seen that that the set 2|Π| is directed by the binary relation � .

Example 4.2. If (Ω, µ) be a finite measure space, then the Lebesgue function spaces Lp(Ω, µ), 1 ≤
p ≤ ∞ have summable bases.

Proof. We are going to show that the function f : Π → Lp(Ω, µ) defined by f(A) = 1A is a basis
function for Lp(Ω, µ). Let x ∈ Lp(Ω, µ). The function φ : Π → K defined by φ(A) = 1

µ(A)

∫
A
xdµ is

bounded. It follows from Property 4. of Theorem 2.1 that the function A 7→ φ(A)f(A) is summable
and it is easily checked that

x = lim
Γ∈(2|Π|,�)

∑
A∈Γ

1

µ(A)

∫
A

xdµ1A.

The proof is complete.

It is worth remarking that Lp(Ω, µ) may not be separable and then it fails to have a Schauder
(sequence) basis. Evidently, every unconditional (sequence) basis is a summable basis. However,
L1(Ω, µ) provides us with an example of a Banach space with a summable basis but which fails to
have an unconditional (sequence) basis.

Recall that a Banach space X is said to be a πλ-space (see for example [8],[9]) if there exists a
family {Xγ : γ ∈ Γ} of finite dimensional subspaces of X which satisfies

1. {Xγ : γ ∈ Γ} is a net when directed by containment.

2.
⋃
γ∈Γ Xγ = X

3. For every γ ∈ Γ there is a projection Pγ from X onto Xγ with ‖Pγ‖ ≤ λ.

Proposition 4.4. A Banach space with a summable basis is a πλ-space for some λ.

Proof. Let f : Ω→ X be a function basis forX. For every A ∈ 2|Ω|, we let PA : X → X the projection
PA
∑
Ω

φf = σφf (A). Then clearly, the net
{
PAX : A ∈ 2|Ω|

}
satisfies 1.,2., and 3..

Since every πλ-space has the bounded approximation property, we have

Corollary 4.3. Every Banach space with a summable basis has the bounded approximation property.

Recall that a Banach space X is said to have unconditional finite dimensional decomposition
(uFDD) if there exists a sequence n 7→ Xn of finite dimensional subspaces ofX such that for every
x ∈ X there exists a unique sequence n 7→ xn, where xn ∈ Xn such that x =

∑
n xn unconditionally.

We extend such a definition as follows.
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Definition 4.2. We say that a Banach space X has the summable finite dimensional decomposition
(sFDD) if there exists a net {Xω : ω ∈ Ω} of finite dimensional subspaces of X such that for every
x ∈ X there exists a unique function Ω 3 ω 7→ x(ω) ∈ X, where x(ω) ∈ Xω such that x =

∑
Ω x(ω) =

limA∈(2|Ω|,⊃)

∑
a∈A x(a).

Clearly if f : Ω→ X is a summable basis for the Banach space X, then {span {f(ω)} , ω ∈ Ω} is
an sFDD for X. We end this paper by showing that every Banach space with an sFDD isomorphically
embeds in a Banach space with a summable basis.

Theorem 4.4. Every Banach space having the sFDD is isomorphic to a subspace of a Banach space
with a summable basis.

Proof. We have seen (Example 4.1) that
{

1A : A ∈ 2|Ω|
}

is a summable basis for the space
∑

(Ω,K) .

Let K be its summable basis constant. Assume that {Xω : ω ∈ Ω} is an sFDD for X. Let X0 =
span{Xω : ω ∈ Ω}. By the Hahn-Banach theorem, for every x =

∑
a∈A xa 6= 0 in X0, where A ∈ 2|Ω|,

there exists an x∗ ∈ X∗ such that x∗(x) = ‖x‖ . The scalar function

φx : Ω → K

ω 7→

{
x∗(xω) if ω ∈ A
0 otherwise

is obviously bounded. It follows from property 4. of Theorem 2.1 that we can define a map T : X0 →∑
(Ω,K) by T

∑
a∈A xa = φx1A. We then notice that for every B ⊂ A∣∣∣∣∣∑

b∈B

x∗(xb)

∣∣∣∣∣ ≤ K
∣∣∣∣∣∑
a∈A

x∗(xa)

∣∣∣∣∣ = K

∣∣∣∣∣x∗(∑
a∈A

xa)

∣∣∣∣∣ = K ‖x‖ (4.2)

which implies
∥∥T∑a∈A xa

∥∥
Σ
≤ K ‖x‖ . Thus T extends to a bounded linear operator T̃ from X into∑

(Ω,K) . On the other hand,

‖x‖ = |x∗(x)| =

∣∣∣∣∣∑
a∈A

x∗(xa)

∣∣∣∣∣ ≤
∥∥∥∥∥T ∑

a∈A

xa

∥∥∥∥∥
Σ

, (4.3)

Equation (4.2) and Equation (4.3) show that T̃ is an isomorphism from X into
∑

(Ω,K) .

5 Conclusions

We have extended the notion of sequence basis to the natural generalization of function basis.

a In Section (2), the notion of summability of Banch space valued functions has been discussed.

b In Section (3), the Banach space structure of the space of Banach space valued summable
functions has been studied. An extension of the Dvoretski-Rogers theorem has been established.

c In Section (4), we introduced and gave a comprehensive study of the notion of summable basis
and related properties.
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