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Abstract

We give extensions of the Lusin’s Theorem, the Severini-Egorov’s Theorem, and the Riesz
Subsequence Theorems to the setting of a non-additive vector valued set functions and sequences
of functions taking values in general metric spaces.
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1 Introduction

The Lusin’s Theorem (LT) and the Severini-Egorov’s Theorem (SET) are respectively the second
and the third of Littlewood’s three principles of real analysis. Informally, the LT states that
every measurable function is nearly continuous and the SET gives a condition for the uniform
convergence of a pointwise convergent sequence of measurable functions. These two theorems gave
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rise to number of important developments in mathematical analysis and its application have been
subjects of various extensions.

The SET was first proved by the Italian mathematician Carlo Severini in 1910 [1], and again one
year later independently by the Russian mathematician Dimitri Egorov [2]. The LT was first proved
by Nikolai Lusin [3] in 1912 as an application of the SET. In 1916, Lusin [4] succeeded in slightly
relaxing the requirement of finiteness of measure of the domain of convergence of the pointwise
converging functions in the statement of the SET. The first mathematicians to prove independently
the SET in the nowadays common abstract measure space setting were Frigyes Riesz (1922, 1928)
[5], and in Wacaw Sierpiski (1928) [6].

In this paper, we attempt to prove that results related to the LT and SET theorems can either be
sustained or naturally extended to the more general setting of functions taking values in topological
spaces or metric spaces. Furthermore, such generalizations are done under significantly relaxed
requirements on the set functions; namely, the set functions are no longer required to be real
valued; we also replace additivity assumption with subadditivity. The proofs of most of our results
are adapted from the proofs of the classical LT and SVT that can be seen in most Real Analysis or
Measure and Integration Theory textbooks, see e.g. [7], [8].

This paper will be organized as follows. In Section 2, we define and discuss the notion of integrator
space which generalizes the concept of measurable space. We carry out natural extension of the LT
and the SET respectively in Section 3 and Section 4. Further extension of the SET is discussed in
Section 5. Finally, an extended version of the Riesz Subsequence Theorem will be given in Section
6.

2 Integrator Space

Throughout this note, Ω denotes our basic set; the set of all subsets of will be denoted by 2Ω. We
shall always consider a system E of subsets of 2Ω that contains the empty set ∅.

By an integrator we mean a set function µ : E → Y , taking values in a given real or complex
normed vector space (Y, ∥ � ∥Y ) and satisfying:

1. µ(∅) = 0;

2. ∥µ(A)∥Y ≤ ∥µ(B)∥Y whenever A ⊂ B in E (monotone);

3.
∥∥µ(∪i∈I Ai)

∥∥
Y
≤
∑

i∈I ∥µ(Ai)∥Y for every finite set I (subadditive).

We additively extend the set function µ as follows

µ(A
∪

B) = µ(A) + µ(B)

whenever A, B are disjoint subsets of E . It is easily checked that the obtained extension is an
integrator on the ring r(E) of subsets generated by the set system E .

For example, the additive extension of the length function on bounded intervals defines an integrator
on the ring generated by bounded intervals of the real number system.

We say that the set system in E is a σ-covering system if for every subset A of Ω, there exists a
sequence {En} of elements of E such that A ⊂

∪
n∈N En. For example, the semiring of intervals is

a σ-covering system for the set R of real numbers. In such a case, we define the µ-size of a subset
A of Ω to be

µ∗(A) = inf

{∑
n∈N

∥µ(En)∥Y : A ⊂
∪
n∈N

En

}
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where the infimum is taken over all sequences {En} ⊂ E such that A ⊂
∪

n∈N En. In what follows
we always consider a set system E that is σ-covering on the basic set Ω. We notice that the function
A 7→ µ∗(A) itself is a non-negative integrator on the power set 2Ω.

An example of σ-covering system is given by the collection of all bounded intervals, (resp. rectangles,
(resp. boxes)) on the real line (resp. plane, (resp. space)).

A triplet (Ω, E ,µ) consisting of a nonempty set Ω, a σ-covering set system E , and an integrator µ
will be called an integrator space.

For example, the triplet (R, r(I), ℓ) where r(I) is the ring generated by the bounded intervals and ℓ
is the additive extension of the interval length function, is an integrator space. Likewise, the triplet
(R, E ,λ∗) where E is any σ-algebra contained in the power set of the real number system, λ∗ is
the Lebesgue outer measure, is an example of integrator space. The Lebesgue measure space is
the integrator space (R, E ,λ) where E the σ-algebra of the Lebesgue measurable sets and λ is the
classical Lebesgue measure. As we have mentioned above, if (Ω, E ,µ) is an integrator space, then
so is (Ω, 2Ω,µ∗).

A full integration theory has been developed using such a notion, and examples of applications can
be seen in [9],[10],[11].

3 Extension of Lusin’s Theorem

We say that an integrator space (Ω, E ,µ) is topological if (Ω, τΩ) is a topological space and the set
system E contains the topology τΩ of Ω. Recall that a function f is continuous from a topological
space (Ω, τΩ) into another topological space (Γ, τΓ) if for every open set O ∈ τΓ, the inverse image
f−1(O) ∈ τΩ. In this section, we fix a topological integrator space (Ω, E ,µ). Given another
topological space (Γ, τΓ), we say that a function f : (Ω, τΩ) → (Γ, τΓ) is

• µ-nearly continuous over Ω if for every open set O ∈ τΓ, given arbitrary ε > 0, there exists
Uε ∈ τΩ such that Uε ⊃ f−1(O) and µ∗(Uε \ f−1(O)) < ε.

• µ-almost continuous if for every ε > 0, there is a set B ⊂ A with µ∗(B) < ε, so that the
restriction of f to A \B is continuous.

For example, if λ denotes the Lebesgue measure on R, then a λ-measurable real valued function
defined on a measurable subset of R is λ-nearly continuous. The classical LT states that a Lebesgue
real valued function defined on a measurable set of finite measure is λ-almost continuous.

The following theorem is a version of the LT in the setting of a vector valued integrator.

Theorem 3.1. Let (Ω, E ,µ) be a topological integrator space. Then a µ-nearly continuous function
f : (Ω, τΩ) → (Γ, τΓ) is µ-almost continuous.

Proof. Fix ε > 0. Let {On : n∈N} be a countable base for the topology τΓ. For each n ∈ N, take
Un ∈ τΩ such that Un ⊃ f−1(On) and µ∗(Un \ f−1(On)) < 2−nε. For n = 1, we let

A1 = Ω \ (U1 \ f−1(O1)).

Proof. Then we have f−1(O1) = A1

∩
U1 which is clearly an open set on the relative topology on

A1. For n = 1, we let
A2 = A1 \ (U2 \ f−1(O2)).

Then we have f−1(O2) = A2

∩
U2 which is clearly an open set on the relative topology on A2. We

repeat the process successively for all n ∈ N . We then set

A = Ω \ (
∪
n∈N

Un \ f−1(On)).
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Clearly, the restriction of f to A is continuous and

µ∗(Ω \A) ≤
∑
n∈N

µ∗(Un \ f−1(On)) <
∑
n∈N

2−nε < ε.

The proof is complete.

4 Extension of Severini-Egorov’s Theorem

The classical SET states that almost everywhere convergent sequences of measurable functions on a
finite measure space converge almost uniformly; that is, for every ε > 0 the convergence is uniform
on a set whose complement has measure less than ε, cf. [5].

We consider an integrator space (Ω, E ,µ). Recall that a sequence n 7→ fn of functions defined on a
subset A ∈ 2Ω and taking value in a metric space (X, d) is said

• to converge µ-almost everywhere to a function f : A → X if there exists a set B ⊂ A,
of µ-size zero such that the sequence n 7→ fn(ω) for every ω ∈ A \B.

• to converge uniformly on A to a function f : A → X if for every ε > 0, there exists N > 0
such that sup {d(f(ω), fn(ω)) : ω ∈ A} < ε whenever n > N .

• to be uniformly Cauchy on A if for every ε > 0, there exists N > 0 such that whenever
n > N and for every p ∈ N, one has sup {d(fn+p(ω), fn(ω)) : ω ∈ A} < ε.

• to converge µ-almost uniformly on A to a function f : A → X if for every ε > 0, there
exists B ⊂ A with µ∗(B) < ε such that the sequence n → fn converges uniformly on the set
A \B.

• to be µ-almost uniformly Cauchy on A if for every ε > 0, there exists B ⊂ A withµ∗(B) <
ε such that the sequence n 7→ fn is uniformly Cauchy on the set A \B.

We now state and prove the following natural extension of the SET.

Theorem 4.1. Let (Ω, E ,µ) be an integrator space and (X, d) a metric space. If a subset A of Ω is
of finite µ–size, and if n → fn is a sequence of X-valued functions converging µ-almost everywhere
on A to an X-valued function f then the sequence n → fn converges almost uniformly to f on A.

That is, loosely speaking, if one has µ-almost everywhere convergence, one can get uniform convergence
by cutting out a part of arbitrarily small size of the domain.

Proof. First, we may assume the convergence of the sequence n → fn is everywhere by cutting out
a set of µ-size zero. Next we define the sets

Am
n :=

m∩
i=n

{
ω ∈ Ω : d(f(ω), fn(ω)) <

1

m

}
.

As n gets bigger, we are taking the intersection of fewer and fewer sets, and so Am
1 ⊂ Am

2 ⊂ · · · .
Since the sequence n → fn converges pointwise to f , eventually d(f(ω), fn(ω)) <

1
m
.

5 Further Extensions

We introduce some notions that will be useful in obtaining further generalization of the SET. Again
we fix an integrator space (Ω, E ,µ), a metric space (X, d), a sequence n 7→ fn of X-valued functions
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defined on Ω, and f an X-valued functions also defined on Ω. For n ∈ N,r > 0, and A a subset of
Ω, we let

R(fn, f, r, A) =
∪
k=n

ω ∈ A : d(f(ω), fn(ω)) > r.

Then it is quickly seen that

• for fixed r > 0, the sequence n 7→ R(fn, f, r, A) is non-increasing.

• for fixed n ∈ N, the mapping r 7→ R(fn, f, r, A) is non-increasing on [0,∞).

Our next two results give characterizations of uniform convergence and almost uniform convergence.

Theorem 5.1. Let (Ω, E ,µ) be an integrator space and (X, d) a metric space. Let n 7→ fn be a
sequence of X-valued functions on a subset A of Ω. Then the sequence n 7→ fn converges uniformly
on A to a function f : A → X if and only if for every A, there exists n ∈ N such that R(fn, f, r, A) =
∅.

Proof. If the sequence n 7→ fn converges uniformly to f , then given r > 0 there exists nr ∈ N such
that

sup d(f(ω), fn(ω)) : ω ∈ A ≤ r

whenever n ≥ nr. Therefore R(fn, f, r, A) = ∅. Conversely, assume that given r > 0 there exists
nr ∈ N such that R(fn, f, r, A) = ∅. Then for n ≥ nr we have sup d(f(ω), fn(ω)) : ω ∈ A ≤ r, that
is, the sequence n 7→ fn converges uniformly to f .

Theorem 5.2. Let (Ω, E ,µ) be an integrator space and (X, d) a metric space. Let n 7→ fn be
a sequence of X-valued functions on a subset A of Ω. Then the sequence n 7→ fn converges µ-
almost uniformly on A to a function f : A → X if and only if for every r > 0, the sequence
n 7→ µ (R(fn, f, r, A)) converges to 0.

Proof. Assume that the sequence n 7→ fn converges µ-almost uniformly on A to a function f : A →
X. Fix r > 0. Given ε > 0, there exists B ⊂ A with µ∗(B) < ε such that the sequence n 7→ fn
converges uniformly on the set A \ B. Therefore, there exists nr ∈ N such that R(fn, f, r, A) ⊂ B.
It follows that whenever n ≥ nr, we have

µ∗ (R(fn, f, r, A)) ≤ µ∗ (R(fnr , f, r, A)) < ε.

Since ε > 0 is arbitrary, we infer that the sequence n 7→ µ∗ (R(fn, f, r, A)) converges to 0.
Conversely, assume that given r > 0, the sequence n 7→ µ∗ (R(fn, f, r, A)) converges to 0. Let
ε > 0. For each k ∈ N, there exists nk ∈ N such that

µ∗
(
R(fnk , f,

1

k
,A)

)
<

ε

2k
.

Let B =
∪

k∈N R(fnk , f,
1
k
, A). Then

µ∗(B) ≤
∞∑

k=1

µ∗
(
R(fnk , f,

1

k
,A)

)
≤ ε.

Since R(fnk , f,
1
k
, A) ⊂ B, whenever n ≥ nk and ω /∈ B, we have d(f(ω), fn(ω)) < 1/k. Thus the

sequence n 7→ fn converges uniformly on the set A \B.

For our next results, we need the following easy extension of the Borel-Cantelli Lemma.

Theorem 5.3. Let (Ω, E ,µ) be an integrator space and n 7→ En a sequence in 2Ω. If the series∑∞
n=1 µ

∗(En) converges then the sequence n 7→ µ∗ (∩∞
n=1

(∪∞
k=n En

))
converges to 0.
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Proof. Assume that the series
∑∞

n=1 µ
∗(En) converges. By rearranging, we can assume that the

sequence n 7→ µ∗(En) is in non-increasing order. Since the series
∑∞

n=1 µ
∗(En) converges, the

sequence n 7→
∑∞

k=n µ∗(Ek) converges to 0. It follows that

µ∗

(
∞∩

n=1

(
∞∪

k=n

Ek

))
≤ inf

n≥1
µ∗

(
∞∪

k=n

Ek

)
≤ inf

n≥1

∞∑
k=n

µ∗ (Ek) = 0.

The proof is complete.

We are now ready to state and prove a generalized version of the SET.

Theorem 5.4. Let (Ω, E ,µ) be an integrator space and (X, d) a metric space. Let n 7→ fn be a
sequence of X-valued functions on a subset A of Ω. Then the following statements are equivalent:

1. The sequence n 7→ fn converges µ-almost uniformly on A to a function f : A → X.

2. For every r > 0, n 7→ µ∗ (R(fn, f, r, A)) converges to 0.

3. For every r > 0, there exists n ∈ N such that µ∗ (R(fn, f, r, A)) < ∞ and that the sequence
n 7→ fn converges µ-almost everywhere on A.

Proof. Only the equivalence 2. ⇔ 3. remains to be shown. Since convergent sequences are bounded,
the property in 2. implies that for every r > 0, we have µ∗ (R(fn, f, r, A)) < ∞, and thus the first
part of the statement in 3. is satisfied.

For each n ∈ N, let En ⊂ A such that µ∗(En) < 1/n and that the sequence n 7→ fn converges
uniformly to f on the set A \ En. Let F :=

∩∞
n=1

∪∞
k=n Ek . Then by Theorem 5.3, µ∗(F ) = 0. If

ω ∈ A \ En, then ω belongs to only finitely many En, and thus ω ∈ A \ En for all n greater than
some integer n(ω). Hence fn(ω) → f(ω) for ω ∈ A \ F .

Conversely, let F be a subset of A of µ-size 0 such that fn(ω) 9 f(ω) for ω ∈ F . Fix r > 0. We
claim that E :=

∩∞
n=1 R(fnr , f, r, A) ⊂ F . Indeed, if ω ∈ E, then for every n ∈ N there exists k ≥ n

such that d(f(ω), fk(ω)) > r. Thus ω ∈ F as claimed. Hence

0 ≤ lim
n→∞

µ∗(R(fn, f, r, A)) ≤ µ∗(E) ≤ µ∗(F ) = 0,

showing that 2. is satisfied.

6 Extension of the Riesz Subsequence Theorems

In ths secion, we discuss further relations between different modes of convergence of sequences of
functions, extending the classical theroems due to Riesz. Again, the triplet (Ω, E ,µ) is an integrator
space, and the pair (X, d) is a metric space. We say that a sequence of X-valued functions n 7→ fn
defined on Ω

• µ-converges to an X-valued function f defined on A ⊂ Ω provided that for every ε > 0,

lim
n→∞

µ∗(ω ∈ A : d(fn(ω), f(ω)) ≥ ε) = 0.

We then write fn
µ→ f .

• µ-Cauchy on A ⊂ Ω provided that for every ε > 0, there exists n0 ∈ N such that for n ≥ n0

and for every p ∈ N, one has

lim
n→∞

µ∗(ω ∈ A : d(fn+p(ω), fn(ω)) ≥ ε) = 0.
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It immediately follows from the subadditivity of the set function µ that if the sequence n 7→ fn is
µ-convergent then it is µ-Cauchy.

Theorem 6.1. Let (Ω, E ,µ) be an integrator space and (X, d) a metric space. Let n 7→ fn be a
sequence of X-valued functions on a subset A of Ω converging µ-almost uniformly to a function f
on A. Then fn

µ→ f .

Proof. Let r > 0. For every p ∈ N there exists Ep ⊂ A with µ∗(Ep) < 1/p such that the sequence
n 7→ fn converges uniformly to f on the set A \ Ep. It follows that there exists n(r, p) ∈ N such
that whenever n ≥ n(r, p), we have

µ∗(ω ∈ A : d(fn(ω), f(ω)) ≥ ε) ≤ µ∗(Ep) <
1

p
.

Since p is arbitrary, we infer that fn
µ→ f .

Theorem 6.2. Let (Ω, E ,µ) be an integrator space and (X, d) a complete metric space. Let n 7→ fn
be a µ-Cauchy sequence of X-valued functions on a subset A of Ω. Then there exists a subsequence
k 7→ fnk that is

1. µ-almost everywhere convergent,

2. µ-almost uniformly convergent, and

3. µ-convergent to a function f : A → X.

Proof. Assume that the sequence n 7→ fn is µ-Cauchy. Then for every r > 0, there exists n(r) ∈ N
such that whenever n ≥ n(r) and p ∈ N, we have

µ∗(ω ∈ A : d(f(n+ p)(ω), fn(ω)) ≥ r) ≤ r.

We let n1 = n( 1
2
). Inductively, we define nk+1 := maxnk + 1, n( 1

2k
). Then the subsequence

k 7→ gk := fnk satisfies

µ∗(ω ∈ A : d(g(k + 1)(ω), gk(ω)) ≥
1

2k
) ≤ 1

2k
.

Let F :=
∩∞

n=1

∪∞
k=n Ek . By Theorem , µ∗(F ) = 0. For ω ∈ A \ F , there exists kω ∈ N such that

ω ∈ A \ Ek for all k ≥ kω. It follows that whenever m ≥ kω and for every p ∈ N we have

d(g(m+ p)(ω), gm(ω)) ≤ d(gm+1(ω), gm(ω)) + · · ·+ d(gm+p(ω), gm+p−1(ω))

≤ 1

2k
+ · · · + 1

2m+p−1
<

1

2m−1
.

Since (X, d) is complete, it follows that the subsequence k 7→ gk(ω) converges for ω ∈ A \ F . If we
now define

f(ω) =

{
limk→∞ gk(ω) if ω ∈ A \ F
0 otherwise,

then k 7→ gk(ω) converges µ-almost everywhere to f . We next show that the sequence k 7→ gk
converges µ-almost uniformly to f . Let r > 0 and N ∈ N large enough so that 2−N+1 < r. We then
let FN :=

∪∞
k=N Ek. Then µ∗(FN ) ≤ 2−N+1 < r. If ω ∈ A \ FN then ω ∈ A \ Ek for all k ≥ N . It

follows that whenever i ≥ N and for every p ∈ N, we have

d(gi+p(ω), gi(ω)) ≤ 2−i+1 < 2−N+1.

Passing to a limit as p → ∞, we have for i ≥ N
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d(f(ω), gi(ω)) ≤ 2−i+1 < 2−N+1 < r.

Since r > 0 is arbitrary, the sequence k 7→ gk converges µ-almost uniformly to f .

Finally, an application of Theorem 6.1 shows that fnk

µ→ f . The proof is complete.

More can be said under the hypothesis of Theorem 6.2. Noticing that

{ω ∈ A : d(f(ω), fn(ω)) > r} ⊂ {ω ∈ A : d(f(ω), fnk(ω)) > r} ∪ {ω ∈ A : d(fnk (ω), fn(ω)) > r} ,

we have

µ∗ ({ω ∈ A : d(f(ω), fn(ω)) > r}) ≤ µ∗ ({ω ∈ A : d(f(ω), fnk (ω)) > r})
+µ∗ {ω ∈ A : d(fnk(ω), fn(ω)) > r} .

Since the sequence fnk

µ→ f and the sequence n 7→ fn be a µ-Cauchy, the two terms on the
right-hand side converges to 0. Hence, we can state the following theorem.

Theorem 6.3. Let (Ω, E ,µ) be an integrator space and (X, d) a metric space. Every µ-Cauchy
sequence of X-valued functions on a subset A of Ω is µ-convergent on A.

7 Conclusions

This work presents a comprehensive view of the natural extensions of the Lusin’s Theorem, Severini-
Egorov’s Theorem, and the Riesz Subsequence Theorem to the setting of functions taking values in
metric spaces or topological spaces. The strength of such extensions is the fact that the functions
are no longer assumed to be measurable and the set functions need not be additive nor non-negative
real-valued. The present note contributes to the strengthening of the unifying property of the new
approach to integration theory introduced and disseminated in [9],[10],[11].
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