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Abstract 
 

We present a straightforward introduction to the unconditional integrability in the extended sense. We 
state and proof useful necessary and sufficient conditions for unconditional integrability of complex or 
real valued functions. As an application, we obtain a simpler direct proof of mildly extended version of 
the Birkhoff’s pointwise ergodic theorem.  
 

 
Keywords: Conditional integrability; conditional expectation; ergodic theorem; pointwise convergence. 
  
2010 mathematics subject classification: 38A05, 28D05, 28A25. 
 

1 Introduction 
 
The notion of integration is undeniably of fundamental importance in analysis and its application. The 
Lebesgue integral has been dominating the theory of integration since its introduction by Henri Lebesgue at 
the beginning of the 20th century. New more efficient approach to integration has recently been introduced, 
see for example [1-3] replacing many of the cumbersome manipulations of the Lebesgue integral with 
simpler and concise arguments. This is due mainly by the non-dependency of the new integration theory on 
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the measure theory. Such an approach has led to various extensions and easy proofs of the classical results 
related to integration theory, see for example [4-7]. The main purpose of this paper is to give a thorough 
study of the concept of unconditional integrability in the setting of the new approach to integration. We 
obtain as an application an easy proof of a more general statement of the ergodic theorem. 
 
Ergodic theory is the study of long term average behavior of systems evolving in time and related problems. 
Vaguely speaking, the ergodic theorem asserts that in an ergodic dynamical system, the statistical (or time) 
average is the same as the space average. The first result in this direction is the Poincaré recurrence theorem, 
which claims that almost all points in any subset of the phase space eventually revisit the set. Various 
ergodic theorems and their proofs have since been provided: [8-11]. Two of the most important ones are 
those of Birkhoff and von Neumann that were proved almost at the same time in early 1930’s and which 
assert the existence of a time average along each trajectory. While von Neumann’s result concerns L2 -
convergence, and has a quick proof, Birkhoff’s theorem is about pointwise convergence, holds for any 
function in L1 and has proofs that all require hard analysis. The result we are interested in is the later 
seemingly stronger ergodic theorem. We propose an ergodic theorem that is slightly more general than the 
Birkhoff’s theorem. Our result is valid for any function that is not necessarily measurable but integrable in 
an extended sense and for any ergodic transformation that is not measurable either. 

 
The paper is organized as follows. Section 2 will be entirely devoted to a thorough review of the notion of 
unconditional integrability. The concept of derivative of set functions as well as the notion of conditional 
expectation are reviewed in Section 3. In Section 4, we introduce and study ergodicity in a slightly extended 
setting and we show how the proof of the pointwise ergodic theorem is intrinsically related to the definition 
of unconditional integrability. 
 

2 Unconditional Integrability 
 
Throughout this paper, Ω will be an arbitrary nonempty set; 2Ω   will denote the power set of Ω, i.e. the set of 
all subsets of Ω, and � ∶ Σ ⊂ 2Ω  → � (= ℝ or ℂ) is an integrator, that is, a set function defined on a semiring 
Σ of subsets of Ω, that satisfies the following properties: 
 

1.     �(∅)  =  0; 
2.     |�(�)|  ≤  |�(� ∪  �)|  ≤  |�(�)|  +  |�(�)| for every pair �, � ∈ Σ. 

 
We note that the above properties imply that an integrator is necessarily σ-subadditive, that is  
 

�� �� ��

�∈ℕ

�� ≤ �|�(��)|

�∈ℕ

 

 
for every sequence {An} in �. 
 

In general, we require the set to be at least a semiring. The triplet (Ω, �, µ) will be called an integrator 
space. For example, 
 

 If � is a σ-algebra and µ is a measure on measurable space (Ω, �), then the measure space (Ω, �, µ)  
is an integrator space. 

 If µ is an outer measure, then the triplet (Ω, 2Ω, µ) is an integrator space. 
 If � is the set of all bounded intervals in ℝ, and ℓ is the length function on � , then the triplet 

(ℝ, �, ℓ) is an integrator space. 

 

The notion of a �, µ-subpartition P of a set A ∈ 2Ω  is defined to be any finite collection of subsets of A 
elements of Σ satisfying 
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1. |µ(�)| <  ∞ for all � ∈ �; 
2. � ∩ � = ∅  whenever � and � are different sets in �. 

 
We denote by ∪P the subset of A obtained by taking the union of all elements of P. It is worth noticing that 

∪P is not necessarily equal to A. A �, µ-subpartition P is said to be tagged if for each � ∈ �, a point �� ∈ �  

is chosen. We say that P is unconditionally tagged if for each � ∈ �  the tagging point tI   is not 
necessarily an element of I but do belong to ∪P. We denote by �(Ω, �, µ) (respectively �� (Ω, �, µ)) the 
collection of all tagged (respectively unconditionally tagged) �, µ-subpartitions of the set A. Clearly, we 
have  Π(Ω, Σ, µ)⊂�� (Ω, �, µ). 
 
The mesh or the norm of � ∈  ��(Ω, �, µ) is defined to be 

 
‖�‖  =  max{|µ(�)| ∶  � ∈  �}. 

 
If �, � ∈  ��(Ω, �, µ) we say that � is a refinement of � and we write � ≻ � if ‖�‖ ≤ ‖�‖ and ∪ � ⊃∪ �. 
It is readily seen that such a relation does not depend on the tagging points. It is also easy to see that the 
relation is transitive on ��(Ω, �, µ). If �, � ∈��(Ω, �, µ), we denote  
 

� ∨  � ∶= { � ∖∪ �, � ∖∪ �, � ∩ �: � ∈  �, � ∈  �} 
 
Clearly, � ∨  � ∈ �� (Ω, �, µ) , � ∨  � ≻ � and � ∨  � ≻ � . Thus, the relation has the upper bound 
property on �� (Ω, �, µ). We then infer that the set �� (Ω, �, µ) is directed in the sense of Moore-Smith (as 
described by McShane [12]) by the binary relation ≻. 
 
Given a function � ∶  Ω →  �, we associate the mapping �� ∶  �� (�, �, µ)  →  � defined by 

 

�
�

(�) =  � �(��)�(�)

�∈�

  

 

 If � ∈  �(�, �, µ), the sum ��(�) =  ∑ �(��)�(�)�∈�  is called the �, µ-Riemann sum of � at �. 

 If � ∈  ��(�, �, µ), the sum ��(�) =  ∑ �(��)�(�)�∈�   is called the unconditional �, µ-Riemann 
sum of � at �. 

 
Since ��(�, �, µ) and �(�, �, µ), are both directed by refinement ≻, the function �

�  is a net. We are now 

ready to give our definition of integrability. 
 

Definition 2.1. A function � ∶  Ω →  � is said to be �, µ-integrable, respectively unconditionally �, µ-

integrable, over a subset �  of Ω if lim(�(�,�,µ),≻) �� ≔ ∫ ���
�

,  respectively lim(��(�,�,µ),≻) �� ≔ ∫ ���
�

) 

exists in �. 
 

In other words, if for every � > 0, there exists �0 ∈  �(�, �, µ),  respectively �0 ∈  ��(�, �, µ), such that for 
every � ∈  �(�, �, µ),  respectively � ∈  ��(�, �, µ), � ≻ ��, we have 
 

���
(�) − � ���

�
�< �. 

 

We denote by �(�, �, µ), respectively ��(�, �, µ), the set of all functions �: Ω →  � that are �, µ-integrable, 
respectively unconditionally �, µ-integrable, over a given subset A of Ω. We infer that being defined as limit 
operators, the two types of integral are both linear, and therefore the spaces �(�, �, µ) and ��(�, �, µ) are 
both linear spaces. It is also clear that ��(�, �, µ) ⊂ �(�, �, µ). As expected, we shall see later that the inverse 
inclusion is not necessarily true. 
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We say that a function � is µ-essentially equal on � to a function g and we write  � ∼ � if �({� ∈  � ∶
 �(�) ≠ �(�)})  =  0.  It is readily seen that the binary relation ∼  is an equivalence relation either of 
ℐ(�, �, µ) or ℐ�(�, �, µ). The quotient spaces ℐ(�, �, µ)/~  and ℐ�(�, �, µ)/~  shall be respectively denoted 
by �(�, �, µ)  and �� (�, �, µ) . It is worth noticing that if �  is a topological space, if Σ  is a σ-algebra 

containing the Borel sets of �, and if µ is the Lebesgue measure on A, then �� (�, �, µ) ≅ �1(�, �, µ), the 
space of Lebesgue integrable functions over A. 

 

For every�: Ω →  �,  we define 

 

 the �, µ-variation of � over the set � to be 

 

varΣ,µ (�, �): = sup����(�)�: � ∈ �(�, �, µ)�; 

 

 the unconditional �, µ-variation of � over the set � to be 

 

uvarΣ,µ (�, �): = sup����(�)�: � ∈  ��(�, �, µ)�.  

 

We say that the function � is 

 

 of bounded �, µ-variation over A if varΣ,µ (�, �) < ∞  

 of bounded unconditional �, µ-variation if uvarΣ,µ (�, �) < ∞. 

 

Clearly, if f ∈ ℐ(�, �, µ) then f   is of bounded �, µ-variation and if � ∈ ℐ�(�, �, µ) then f   is of bounded 
unconditional �, µ-variation. We then define 

 
‖�‖ = varΣ,μ (�, �) and ‖�‖� = uvarΣ,μ (�, �),  

 

It is readily seen that each of � ↦ ‖�‖   and � ↦ ‖�‖�  defines a seminorm respectively on the space 
ℐ(�, �, µ)  and ℐ�(�, �, µ)  and yields a norm respectively on �(�, �, µ)  and ��(�, �, µ).  Moreover, the 
space �(�, �, µ) and ��(�, �, µ) are Banach spaces. 
 

We have the following proposition. 
 

Proposition 2.1. If �: Ω →  � is �, µ-integrable, respectively unconditionally �, µ-integrable, over a 
given subset � of Ω, then for every � > 0, there exists �0 ∈ �(�, �, µ), respectively �0 ∈ ��(�, �, µ), such 

that ���(�)�≤ �  for every � ∈ �(�, �, µ),  respectively � ∈  �� (�, �, µ), that does not intersect P0  and 

such that ‖�‖ ≤ ‖��‖. 

 

Proof. Fix � > 0. Let P0 ∈ �(�, �, µ) such that we have 

 

���(�) − � ���
�

�< �/2. 

 

for �0 ∈ �(�, �, µ) such that � ≻ ��. Fix such a P. Then for every � ∈ �(�, �, µ) that does not intersect P0 

and such that ‖�‖ ≤ ‖��‖, we have �� ∨ � ∈ �(�, �, µ), �� ∨ � ≻ ��   and therefore  

 

���(�� ∨ �) − � ���
�

�< �/2. 

 



It follows that 
 

���(�)�= ���(�� ∨ �) − ��(

   ≤ ���(�) − � ���
�

The unconditional case is proved in a similar fashion by simply using 
proof is complete. 
 
For arbitrary �, µ-subpartition P and Q
 

� ∧  � ∶=  {� ∩  � ∶  � ∈  �,

 
Definition 2.2. A function �: Ω 
respectively the Cauchy criterion for unconditional 
there exists �0 ∈ �(�, �, µ), respectively 

 

���(� ∨ �) − ��(� ∧ �)�≤ �
 
whenever �, � are elements of �(�, �
 
We notice that if �, � ∈ �(�, �, µ) (respectively 
 

���(� ∨ �) − ��(� ∧ �) =  |

The following fact is then easily derived.
 

Proposition 2.2. A function �: Ω 
the Cauchy criterion for unconditional 

there exists �0 ∈ �(�, �, µ) , respectively

respectively  � ∈ ��
(�, �, µ), that does not intersect 

 
We have seen (Proposition 2.1) that every 
function satisfies the Cauchy criterion for 
unconditional �, µ-integrability. It turns out that the converse also holds. This follows from the general well
known fact that for nets taking values in a Banach space, the Cauchy net condition is equivalent to the net 
convergence (see for example [12]
correspond exactly to the Cauchy condition for the nets 

��(�) ∈ �. It follows that 

 

Proposition 2.3. A function �: Ω 
 

 the Cauchy criterion for �, µ
 the Cauchy criterion for unconditional 

��(�, �, µ). 
 
The following result gives useful characterizations of unconditional integrability.
 

Theorem 2.1. Let �: Ω →  �. The following statements are equivalent for a subset 
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����+ �� ��� − ��(��)
�

�< �. 

 
The unconditional case is proved in a similar fashion by simply using ��(�, �, µ) in lieu of �(�

 

Q, we shall denote 

, � ∈  �}    and   � △ � ∶=  � ∨  � \ � ∧  �. 

 →  �  is said to satisfy the Cauchy criterion for �, µ
Cauchy criterion for unconditional �, µ-integrability, over a set � ⊂ Ω if for every 

respectively �0 ∈ ��
(�, �, µ), such that 

� � 

�, µ), respectively ��(�, �, µ), such that �, � ≻ ��,. 

(respectively ��(�, �, µ)), then 

|��(� ∧ �)|. � 

 
The following fact is then easily derived. 

 →  � satisfies the Cauchy criterion for �, µ-integrability, respectively 
the Cauchy criterion for unconditional Σ,µ-integrability,  over a set A ⊂ Ω if and only if for every

respectively ��(�, �, µ),  such that  ���(�)�≤ �  for every  �

that does not intersect P0. 

We have seen (Proposition 2.1) that every �, µ -integrable, respectively unconditionally �
function satisfies the Cauchy criterion for �, µ -integrability, respectively the Cauchy criterion for 

integrability. It turns out that the converse also holds. This follows from the general well
ng values in a Banach space, the Cauchy net condition is equivalent to the net 

). Clearly, the two Cauchy conditions introduced in Definition 2.2 
correspond exactly to the Cauchy condition for the nets �(�, �, µ) ∋ � ↦ ��(�) ∈ � and ��(

→  � satisfies 

µ-integrability over a set � ⊂ Ω if, and only if, � ∈ �(�, �,
the Cauchy criterion for unconditional �, µ-integrability over a set � ⊂ Ω  if, and only if, 

The following result gives useful characterizations of unconditional integrability. 

. The following statements are equivalent for a subset A of Ω: 
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�, �, µ). The 
  

µ -integrability 
if for every � > 0, 

integrability, respectively 
if and only if for every , 

� ∈ �(�, �, µ) ,  

�, µ -integrable, 
integrability, respectively the Cauchy criterion for 

integrability. It turns out that the converse also holds. This follows from the general well-
ng values in a Banach space, the Cauchy net condition is equivalent to the net 

). Clearly, the two Cauchy conditions introduced in Definition 2.2 
(�, �, µ) ∋ � ↦

, µ).  
if, and only if, � ∈
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1. f is unconditionally �, µ-integrable over A. 

2. For any injection � : � →  � , the function � ↦ ��� (�)� is �, �-integrable over � , where the 

integrator �: � ��(�)  → � is defined by �(� ��(�)) = �(�) for all � ∈ �. 
3. For every function �: � → {− 1,1}, the function � ↦ �(�)�(�) is �, µ-integrable over �. 
4. For every bounded function �: � → �, the function � ↦ �(�)�(�) is �, µ-integrable over �. 

 
Proof. We have 4. ⇒ 3.  and 2 . ⇒ 1. are obvious. To see 1. ⇒ 2., suppose � ∈ ��(�, �, µ) and let � > 0. 

Then there exists �� ∈ ��(�, �, µ) such that ���(�)�< � for every R ∈��(�, �, µ) that does not intersect P0. 

Let � : � →  � be an injective mapping. We can choose �� ∈ ��(Γ, � ��(�), �) so that (��) ≻ �� . Again, 
by injectivity of � , if � ∈ ��(Γ, � ��(�), �) and � ∩ �� = ∅ then � (�) ∩ � (��) = ∅ and therefore � (�) 
is disjoint from P0, and we have  

 

�� ∘� �(�)�= ���� (�)�< � 
 

Hence, the function � ↦ ��� (�)�  is � ��(�),η-integrable over Γ. We have established that 1. ⇒ 2.. 
 
To show that 2. ⇔ 3., let �1 =  �− 1(1) and �− 1 =  �− 1(− 1). Then � = �� ∪ ���  and �1 ∪ �− 1 = ∅. Let 
� 1: �1 → �  and � − 1: �− 1 → �  be respectively, the canonical injection of �1  and �− 1  into A. Then the 
following two functions 
 

� ∈ �� ↦ ��� �(�)� = �(�)  and � ∈ ��� ↦ ��� ��(�)� = �(�) 
 
are both �, µ-integrable over A if and only if 
 

� ↦ �(�)�(�) = 1��
(�)�(�) + 1�� �

(�)�(�) 
 
is �, µ-integrable over A. 
 
3. ⇒ 4. We give the proof for the real case. The changes for complex case are straightforward. Let � : � → � 
be bounded and fix  � ∈ �(�, �, µ). Let σ: A → {−1,1} be defined by �(�) = sgn (�(�)�(�)). Then 
 

�� � (��)�(��)

�∈�

�(�)� ≤ �|�(��)||�(��)�(�)|

�∈�

≤ sup
�∈�

|� (�)| �|�(��)�(�)|

�∈�

 

≤ sup
�∈�

|� (�)| � �(��)�(��)�(�)

�∈�

≤ sup
�∈�

|� (�)| �� �(��)�(��)�(�)

�∈�

� 

 
The desired result follows. The proof is complete.  

 
Corollary 2.1. A function �: Ω → � is unconditionally �, µ-integrable over � if and only if it is 
unconditionally �, µ-integrable over all subsets of �. 

 
Theorem 2.2. If �: Ω → � is unconditionally �, µ-integrable over �, then for any injection � : � → � 
 

� ���
�

= � � ∘���
� − 1(�)

 

  
where the integrator �: � ��(�) → � is defined by �(� ��(�)) = �(�) for all � ∈ �. 
 

Proof. Assume that � > 0. Choose �� ∈ �(� ��(�), � ��(�), �)  such that 
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�� � ∘��� − � ∘ �
�
��1�

� − 1(�)

�<
�

3
. 

 
Choose �� ∈ ��(�, �, µ) such that �� ≻ � (��) and 

 

���(��) − � ���
�

�<
�

3
. 

 
By injectivity, we can choose �� ∈ �(� ��(�), � ��(�), �) such that � (��) ≻ �� and 
 

�� � ∘��� − � ∘ �
�
��2�

� − 1(�)

�<
�

3
. 

 
Choose �� ∈ ��(�, �, µ) such that �� ≻ � (��) and  
   

���(��) − � ���
�

�<
�

3
. 

 
Continuing in this way, we construct sequences � ↦ ��  and � ↦ ��  such that � (����) ≻ �� ≻ � (��) 

 

�� � ∘��� − � ∘ �
�
����

� − 1(�)

�<
�

3
   and  ��

�
(��) − � ���

�

�<
�

3
. 

 
Now we let � = ⋃ ���∈ℕ  and define � ′: � → � by � ′(�) = � (�). 
 

By our hypothesis, the function � ↦ ��� ′(�)� is also �, µ-integrable. On the other hand, it follows from the 
above two inequalities that 
 

�� � ∘��� − � ∘ � ′
�
��

�
�

� − 1(�)

�<
�

3
   and  ��

�
�� ′(�

�
)�− � ���

�

�<
�

3
. 

 
We notice that 
 

� ∘� ′
�

(��) = � �(� ′(��))�(��)

�∈��

= � �(� ′(��))�(� ′(�))

�′(�)∈�′(��)

= ��(��). 

 

By the uniqueness of limit, we must have ∫ ���
�

= ∫ � ∘���
�� �(�)

 as to be shown.  

 
It follows that if � ∈ ℐ�(�, �, µ), then in particular, both f and |f| are in ℐ(�, �, µ). We shall denote by 

ℐ1(�, �, µ) the space of all functions such that both f and |f| are in ℐ(�, �, µ). It is then easy to see that 
ℐ�(�, �, µ) = ℐ�(�, �, µ) . More generally, for 1 ≤ p < ∞, we denote by ℐ�(�, �, µ) , respectively by 
��(�, �, µ), the space of all functions (all classes of functions) such that |�|�   are in ℐ(�, �, µ), respectively in 
�(�, �, µ). By a standard argument, one shows that ℐ�(�, �, µ) and ��(�, �, µ) are complete spaces. 
 
For the particular case where � is a σ-algebra containing the Borel sets, µ  is the Lebesgue measure on �, 

and � a measurable subset of Ω, then the space of unconditionally �, µ-integrable �1(�, �, µ), corresponds 
exactly to the Lebesgue function space L1 (�, �, µ). 
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We finish this section by noticing that if Σ1 ⊂ Σ2 in 2Ω, then �(�, ��, µ)  ⊂  �(�, ��, µ)  (respectively, 
��(�, �1, µ) ⊂ ��(�, �2, µ) . Hence, we have the following proposition stating the relationship between 
�1,µ-integrability and �2,µ-integrability. (See [2] for more details.) 
 

Proposition 2.4. Assume that �1 ⊂ �2 in 2Ω. Then for every A ∈ 2Ω, ℐ(�, ��, µ)  ⊂  ℐ(�, ��, µ), 
ℐ�(�, �1, µ) ⊂ ℐ�(�, �2, µ)) and for � ∈  ℐ(�, ��, µ)   
 

� �����
�

= � �����
.

�

 

 

3 Derivative of Set Functions and Conditional Excpectations 
 
In this section, we discuss the notion of derivatives of set functions and conditional expectation. Let 
(Ω, �, µ) be a non-negative finite integrator space and let ℱ be a sub-σ-algebra of the σ-algebra � . Let 
�ℱ denote the restriction of µ to ℱ. Then (Ω, ℱ, �ℱ) is a non-negative finite integrator space. We infer from 

Proposition 2.4 that ℐ(Ω, ℱ, �ℱ) ⊂ ℐ(Ω, �, µ). In what follows, we shall simply write ℐ(Ω, ℱ, �) in lieu of � 
and ∫ ��� in lieu of ∫ ���ℱ. 
 

Definition 3.1. Let µ be a non-negative integrator on (Ω, �). We say that a set function �: � → � is 
absolutely continuous with respect to µ and we write � ≪ � if for every � > 0, there exists δ > 0 such that 
|�(�)| < � whenever E ∈ Σ with �(�) < �. 
 
For example, if � ∈ ℐ(�, �, µ) then the set function ν defined by 
 

�(�) = � ���
�

 

  
is absolutely continuous with respect to µ. The following theorem, which is a particular case of Theorem 10 
of [4]  states that essentially, all µ-absolutely continuous integrators occur in this way. 
 

Theorem 3.1. Let (Ω, �, µ) be a non-negative integrator space. Let ν be an integrator on (Ω, �) with the 
property � ≪ �. Then there exists a function � ∈ ℐ(�, �, µ) such that 
 

�(�) = � ���
�

 

 
for all E ∈ Σ. Moreover, f is unique in the sense that if g is a function with the same property then f = g µ-
almost everywhere. 
 
It is worth noticing that unlike the Radon-Nikodým derivative of a measure, the above density function f 
does not need to be Lebesgue integrable, let alone measurable. Such a function f will simply be called the µ-

derivative of the set function ν. In particular, if ℱ ⊂ �  is a sub-σ-algebra and � ∈ ℐ(�, �, µ)  (not 

necessarily absolutely integrable) then the set function �: � →  �  defined by  �(�) = ∫ ���
�

 is µ-

absolutely continuous. Its µ-derivative is denoted by �(�|ℱ) and is called conditional expectation of � 
with respect to ℱ. 
 
We thus have the following result: 
 

Theorem 3.2. Let (Ω, �, µ) be a non-negative finite integrator space and ℱ ⊂ � is a sub-σ-algebra. Any 
function � ∈ ℐ(�, �, µ) admits a unique conditional expectation �(�|ℱ). 
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Again, being a µ-derivative, the conditional expectation is not required to be measurable. Nonetheless, it 
does have most of the basic properties of the classical conditional expectation for Lebesgue integrable 
functions. Namely, 
 

1. The mapping � ↦  �(�|ℱ)  is linear. 
2. If g is ℱ -measurable and |g| < ∞ µ-almost everywhere, then �(��|ℱ) = ��(�|ℱ). 
3. �(�|Σ) = �. 

4. ∫ �(�|ℱ)��
�

= ∫ ���
�

  for every E ∈ ℱ. 

5. If � denotes the σ-algebra consisting of all subsets �  in �  such that �(�)  =  0  or �(�) = �(Ω) , then 

�(�|�) = ∫ ���
Ω

. 

 

4 Extended Ergodic Theorem 
 
In this section, we introduce a mild extension of the concept of ergodicity. We agree to say that an integrator 

space (Ω, �, µ)  is a state system if the set system � contains Ω and the integrator µ is a non-negative 
finite integrator, that is, �: � → [0, +∞). 
 
If (Ω, �, µ)  is a state system, then the set function �∗: 2Ω → [0, +∞) given by 
 

�∗(�) = inf �� �(�): � ∈ �(Ω, �, µ)

�∈�

� 

 
is a well-defined integrator that clearly seen to extend the integrator µ to the whole power set 2Ω. It will be 

called the size-function associated to µ. It follows from Proposition 2.4 that if � ∈ ℐ(Ω, �, µ)  then 
� ∈ ℐ(2Ω, �, �∗) and one has 
 

� ���
�

= � ���∗.
�

 

 
or all B ∈ 2Ω. 
 
The following definition slightly extends the concept of measure-preserving transformation. 
 

Definition 4.1. Let (Ω, ��, ��)  where i = 1,2 be two state systems. A map �: Ω� → Ω� is said to be size-
preserving if ��

∗(����) = ��(�) for all B ∈ Σ2. 
 
In particular, a map �: Ω → Ω is size-preserving if �∗(����) = �(�)  for all B ∈ Σ. Observe that our 
definition does not require the measurability of the transformation T. 
 
Our next definition is a mild extension of the concept of ergodicity. 

 
Definition 4.2. Let (Ω, �, µ)  be a state system. Then a size-preserving map �: Ω → Ω is said to be 
ergodic if for every B ∈ Σ, whenever T−1B = B, then µ(B) = 0 or µ(B) = µ(Ω). 
 
Again, the measurability of the transformation T is not required in the above definition of ergodicity. The 
following lemma is useful. 

 
Lemma 4.1. Let (Ω, �, µ) be a state system. Let �: Ω → Ω be ergodic. Then for every � ∈ � such that 
�∗(���� △ �) = 0, one has µ(B) = 0 or µ(B) = µ(Ω). 
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Proof. For each � ∈ ℕ, we have 
 

�− 1� △ � ⊂ � �− (�+1)� △ �− ��

�− 1

�=0

= � �− �
��− 1� △ �� .

�− 1

�=0

 

 
Since T preserves sizes, we have 
 

�∗(���� △ �) ≤ � �∗ ����(���� △ �)� = �

���

���

�∗(���� △ �) = 0. 

 

Let � = ⋂ ⋃ ����∞
���

∞
��� . Then clearly, T−1C = C and since T is ergodic, we have µ(C) = 0 or µ(Ω).  We 

also have 
 

�∗ �� △ � ����
�

���
� ≤ � �∗(���� △ �) = 0.

�

���

 

 
Since � △ � ⊂ � △ ⋃ ����∞

��� , we have �∗(� △ �) = 0. In particular, we have �∗(� ∖ �) =  �∗(� ∖ �) =

0, and 
 

�∗(� ∩ �) ≤ �∗(�) ≤ �∗(� ∖ �) + �∗(� ∩ �) = �∗(� ∩ �). 
 
Hence �∗(�) = �∗(� ∩ �). By a symmetric argument, we also obtain  �∗(�) = �∗(� ∩ �) and therefore we 
have  �∗(�) = �∗(�) = 0 or µ(Ω).  
 
We denote by ℱ(Ω) the set of all complex valued functions on non-empty set Ω. Let (Ω�, ��, ��)  where 
� = 1,2 be two state systems, and let �: Ω� → Ω�   be a size-preserving transformation. Define an operator 
��: ℱ(Ω1) → ℱ(Ω2) by ��(�) = � ∘�. The following facts about the operator ��  are easily checked. 
 

1. ��  is a linear operator. 
2. ��� = � where c is a constant. 

3. If � ∈ ℐ(Ω�, ��, ��), then ��(�) ∈ ℐ(Ω�, ��, ��) and ∫ ��(�)���Ω�
= ∫ ����.

Ω�
 

4. Let � ≥ 1. Then ��ℐ�(Ω�, ��, ��) ⊂ ℐ�(Ω�, ��, ��).  
 
Using the above properties, one obtains the following characterizations of ergodicity. 
 

Theorem 4.1. Let �  be a size preserving transformation on a state system (Ω, �, µ). The following 
statements are equivalent: 
 

1. � is ergodic. 
2. If � ∈ ℱ(Ω) satisfies ���(�) = �(�) for �∗ -almost every � ∈ Ω, then � is �∗ -almost everywhere 

equal to a constant function. 
3. If � ∈ ℐ�(Ω, �, �)  satisfies ���(�) = �(�)  for �∗ -almost every � ∈ Ω , then �  is �∗ -almost 

everywhere equal to a constant function. 
 
Proof. 1. ⇒ 2. Suppose � (�(�)) = �(�) for  �∗-almost every � ∈ Ω. Assume without loss of generality that 
f is real valued (otherwise, we consider separately the real part and the imaginary part of f). For each n ≥ 1 
and k ∈ ℤ, define 
 

��,� = �� ∈ Ω:
�

2�
≤ �(�) <

� + 1

2�
� 
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Since �  is ergodic, Lemma 4.1 implies that �∗���,�� = 0  or µ(Ω). In fact, being non-decreasing and 

bounded above, the sequence � ↦
�

��  converges. Since for each n ≥ 1, one has Ω = ⋃ ��,��∈ℤ , there exist 

�� ∈ ℤ such that �∗���,��
� = �∗(Ω). Let � = ⋂ ��,���∈ℕ . Then �∗(�) = �∗(Ω), and if � ∈ �, then ��(�) −

�2�<12�  for all �∈ℕ. Hence ��=lim�→∞�2� and �  is �∗-almost everywhere equal to a constant 
function.  

2. ⇒ 3. is obvious. For 3. ⇒ 1., suppose T−1B = B and µ(B) > 0. Then the indicator function 1� ∈ ℐ�(Ω, �, �) 
and 1� ∘� = 1

�− 1�
= 1�. Hence, by 3., 1�  is �∗-almost everywhere equal to constant function, i.e. 1� = 1Ω  

�-almost everywhere and therefore µ(B) = µ(Ω). The proof is complete.  
 

As a way of application, we now state and prove our promised extended version of the Birkhoff’s Ergodic 
Theorem. 
 

Theorem 4.2. Let � be a size-preserving transformation on a state system (Ω, �, µ). We have 
 

1. If � ∈ ℐ�(Ω, �, �), then  lim�→∞
�

�
∑ �(���)���

���  exists for �-almost every � ∈ Ω. 

2. If � ∈ ℐ�(Ω, �, �)  and � is ergodic, then lim�→∞
�

�
∑ �(���)���

��� =
�

�(Ω)
∫ ���

Ω
.  

 

Proof. Let � ∈ ℐ�(Ω, �, �) and let � = {� ∈ Ω ∶ ���(�) ≠ �(�)}. 
 

 If �∗(Ω ∖ �) = 0, then � is �-almost everywhere constant and therefore for �-almost everywhere �, 

the sum  
�

�
∑ �(���)���

���  is constant and so  lim�→∞
�

�
∑ �(���)���

���   exists for µ-almost every � ∈ Ω. 

 If �∗(�) = 0, then for � large enough, the expression 
 

�∗(Ω)

�
� ������

�− 1

�=0

= � ������
�∗(Ω)

�

�− 1

�=0

 

 
is an unconditional 2Ω, µ∗-Riemann sum of � associated to a 2Ω, µ∗-subpartition P of Ω consisting of subsets 

of size equal to 
�∗(Ω)

�
. The tagging points being chosen to be the elements �, ��, ���, . . . , ����� of the orbit 

of �. Since � ∈ ℐ�(Ω, �, �) then � ∈ ℐ�(Ω, 2Ω, �) therefore  lim�→∞
1

�
∑ �������− 1

�=0 =
1

�(Ω)
∫ ���

Ω
  exists. This 

completes the proof of part 1.  
 
For part 2., we need to consider the σ-algebra of ΣT of T-invariant subsets, namely 
 

Σ� = �� ∈ �: �− 1� = � � almost everywhere� 

 

If � is ergodic, then the σ-algebra Σ�  corresponds exactly to the the σ-algebra � consisting of all subsets � 
in Σ such that µ(B) = 0 or µ(Ω). Therefore 
 

�(�|Σ�) = �(�|�) = � ���
�

. 

 

On the other hand, since � ∈ ℐ�(Ω, �, �), we have ∫ ���
Ω

= ∫ ���∗
Ω

.  The result follows from part 1.    

 

5 Conclusion 
 
This paper essentially gives useful characterizations of unconditional integrability of scalar valued functions 
with respect to a non-negative integrator. As an application, a simpler statement of a more general ergodic 
theorem is obtained. The author believes that the interest of this paper lies not only in the obtained results, 
but also in the light it shed on the very foundation of the study of integration theory. 
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