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1. Introduction

It is hardly possible to overemphasize the importance of the notions
of integral and derivative in mathematical analysis. These two notions
constitute the twin pillars on which analysis is built. The Fundamental
Theorem of Calculus (FTC) shows that integration and differentiation
are essentially inverses of one another. Since its discovery in the 17th
century, several authors have attempted to give a more general setting to
the FTC. A systematic study of the vector valued case of these two no-
tions have started since the first half of the 20th centuries. Details studies
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of integration/differentiation for functions valued in normed spaces are
presented in several books (e.g. [2, 3, 4]). For more recent results on
vector valued integration theory, the reader is referred to [7, 8]. As in
many areas of mathematics, it is always desirable and useful to have at
our disposal a theory at a level of generality that will allow a wide of
a spectrum of applications as possible. Our main purpose in this paper
is to further enlarge the class of integrable and differentiable functions
to include functions taking values in topological vector spaces, and give
more general setting to the statement of the Lebesgue-Nikodym The-
orem, as well as sufficient and necessary conditions under which the
Fundemental Theorem of Calculus holds in such a setting.

The exposition will be organized as follows. In Section 2, we review
few elementary concepts related to limit of nets of elements of a linear
topological space. Some of results in this section can be considered as
of independent interest. In Section 3, we show that a suitable concept
of integration can be defined for functions taking values in a topolog-
ical vector space. In Section 4, we state and prove a newer version of
the Lebesgue-Nikodym theorem. The last Section 5 is devoted to some
extension of the Fundamental Theorem of Calculus.

2. Preliminaries

Since integration and differentiation are both limit operations, it is
very sound to want to develop a good understanding of the concept
of limit. There are many important topological vector spaces where the
notion of convergence are not generated by a norm nor even by a semi-
norm. To treat those cases, it turns out to be very convenient to use the
definition of limit in its most general form as devised by E. H. Moore
and H.L. Smith [5]. Recall that a nonempty set Ω is said to be directed
by a binary relation , if  has the following properties:

1. for x, y, z ∈ Ω if x  y and y  z, then x  z (transitivity);

2. for x, y ∈ Ω, there exists z ∈ Ω such that z  x and z  y (upper
bound property).
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Given a set X, a net of elements of X is an X-valued function defined
on a directed set (Ω,). For our purposes, we will define the notion of
limit for the setting of a topological vector space. We denote by N0(X)
the set of all balanced neighborhoods of 0 in X.

Definition 2.1. Let X be a topological vector space. An X-valued net
f : (Ω,)→ X is said to be convergent if there exists a vector lim

(Ω,)
f ∈ X

such that for every N0 ∈ N0(X), there exists ω0 ∈ Ω such that f(ω) ∈
lim
(Ω,)

f +N0 whenever ω  ω0.

For simplicity of notation, we shall omit such parts of the symbolism
under lim as can be without any danger of confusion. We also introduce
the following notions of boundedness.

Definition 2.2. Let X be a topological vector space. An X-valued net
f :(Ω,)→ X is said to be

1. bounded if its range f(Ω) is bounded in X, that is, if for every
N0 ∈ N0(X), there exists s ∈ [0,∞) such that for every t > s,

f(Ω) ⊂ tN0.

2. eventually bounded if for every N0 ∈ N0(X), there exists ω0 ∈
Ω, and there exists s ∈ [0,∞) such that for every t > s,

f({ω ∈ Ω : ω  ω0}) ⊂ tN0.

Note that as opposed to the notion of eventual boundedness, the notion
of boundedness is independent of the direction. Clearly, a bounded net is
eventually bounded. The converse is not true: the net x ∈ (R, >) → e−x

is eventually bounded towards∞, but obviously not bounded. However,
if the net is a sequence, that is, if f : (N, >) → X is directed towards
∞, then it is an easy exercise to show that

Proposition 2.3. A sequence f :(N, >) → X is bounded if and only if
it is eventually bounded.

Proof. We need only to show the sufficiency. Assume that n → f(n) is
eventually bounded, i.e. for every N0 ∈ N0(X), there exists n0 ∈ N, and
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there exists s ∈ [0,∞) such that for every t > s, f({n ∈ N : n  n0}) ⊂
tN0. Let τ ∈ [0,∞) such that f(1), f(2), . . . , f(n0) ∈ τN0. Then clearly,
for all n ∈ N, f(n) ∈ (τ ∨ t)N0. The proof is complete. 

Proposition 2.4. Let X be a topological vector space. Assume that a
net f : (Ω,) → X is convergent. Then for every N0 ∈ N0(X), there
exists ω0 ∈ Ω such that f(ω) ∈ f() +N0 whenever ω,  ω0.

Proof. Suppose lim
(Ω,)

f = a. Fix N0 ∈ N0(X). We can choose a neigh-

borhood U0 of 0 such that U0 + U0 ⊂ N0. Then there is ω0 ∈ Ω such
that for ω  ω0, we have f(ω) ∈ a+ U0. Thus for ω,  x0, we have

f(ω)− f() = f(ω)− a− (f()− a) ∈ U0 + U0 ⊂ N0.

as desired. 

Definition 2.5. A net f : (Ω,) → X that satisfies the conclusion of
the above Proposition 2.4 is said to be topologically Cauchy.

Recall that a net g : (Γ,) → X is said to be a subnet of a net f :
(Ω,) → X if there exists a function ϕ : Γ → Ω such that g = f ◦ ϕ
and such that for each ω0 ∈ Ω, there exists γ0 ∈ Γ such that whenever
γ  γ0 then ϕ(γ)  ω0.

Proposition 2.6. Let X be a topological vector space and let f : (Ω,)→
X be a topological Cauchy net. Assume that there exists a subnet g : (Γ,
)→ X of f which converges to say a. Then f converges to a.

Proof. Let f : (Ω,) → X be a topological Cauchy net and assume
that a subnet g : (Γ,) → X of f converges to a ∈ X. Let ϕ : Γ → Ω
be the function defining the subnet g. Fix a N0 ∈ N0(X) and choose
N ∈ N0(X) such that N + N ⊂ N0. Then there exists ω0 ∈ Ω such
that f(ω) − f() ∈ N whenever ω,  ω0. There exists γ0 ∈ Γ such
that whenever γ  γ0 then ϕ(γ)  ω0. On the other hand, since the
subnet g = f ◦ϕ converges to a, there exists γN ∈ Γ, such that whenever
γ  γN , f ◦ ϕ(γ) ∈ a + N . It follows that if ω  ω0, then ϕ(γ)  ω0,
and we have

f(ω)− a = f(ω)− f ◦ ϕ(γ) + f ◦ ϕ(γ)− a ∈ N +N ⊂ N0.
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This completes the proof. 

Proposition 2.4 asserts that every convergent net is topologically Cauchy.
The converse of such a statement does not hold in general. A topological
vector space X is said to be topologically complete (resp. sequentially
complete) if every topological Cauchy net (resp. Cauchy sequence) of
elements of X is convergent. Clearly, every topologically complete vector
space is sequentially complete. The following result shows that in fact
the two properties are exactly the same when the vector topology on X
is locally bounded. Both the idea and the proof of the statement of the
next theorem are simple generalization of the idea of a result in [5].

Theorem 2.7. Let X be a locally bounded topological vector space. Then
X is topologically complete if and only if it is sequentially complete.

Proof. Suppose that every Cauchy sequence in a vector space X con-
verges to some element in X. Let f : (Ω,) → X be a topological
Cauchy net. Fixed a neighborhood N0 neighborhoods of 0, and for each
n ∈ N, let Nn = 1

nN0 and let N n be a neighborhood of 0 such that
N n+N


n ⊂ Nn. We then choose successively ω1, ω2, ω3, ... ∈ Ω such that

ωn  ωn−1 and f(ω) − f() ∈ N n whenever ω,  ωn. Then the se-
quence n → f(ωn) is subnet of f which is Cauchy. By our hypothesis, it
converges to some limit. Proposition 2.6 now completes the proof. 

Proposition 2.8. Every topological Cauchy net of elements of a topo-
logical vector space is eventually bounded.

Proof. Let f : (Ω,)→ X be a net. Let N0 and U0 be neighborhoods
of 0 such that U0 + U0 ⊂ N0. Then there exists ω0 ∈ Ω such that for all
ω,  ω0, f(ω)− f() ∈ U0, and in particular for all ω  ω0

f(ω) ∈ f(ω0) + U0.

Choose s > 1 such that ω0 ∈ sU0. Then for ω  ω0, we have

f(ω) ∈ sU0 + U0 ⊂ sU0 + sU0 ⊂ sN0.

The proof is complete. 
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In view of Proposition 2.3, we have

Corollary 2.9. Every Cauchy sequence of elements of a topological vec-
tor space is bounded.

Proposition 2.10. Let E be a subset of a topological vector space X.
Then E is bounded if for every sequence n → xn of elements of E, and
every sequence of scalar n → αn converging to 0, the sequence n → αnxn
converges to 0.

Proof. Suppose that E is bounded, and let n → αn converge to 0. Let
N0 be a balanced neighborhood of 0. Then E ⊂ tN0 for some t > 0.
Choose n large enough so that |αnt| < 1. Then αnE ⊂ αntN0 ⊂ N0.

Thus for every sequence n → xn in E, αnxn ∈ N0, showing that the
sequence n → αnxn converges to 0.

Conversely, suppose that for every sequence n → xn of elements of E,
and every sequence of scalar n → αn converging to 0, the sequence of
vectors n → αnxn converges to 0. Suppose to the contrary that E is
not bounded. Then there exist a N0 ∈ N0(X) and a sequence n  αn
of positive real number diverging to ∞ such that no αnN0 contains E.
Then for each n, take xn ∈ E such that xn /∈ αnN0, or equivalently
α−1n xn /∈ N0. It follows that the sequence n → α−1n xn does not converge
to 0. A contradiction! 

3. Integrability

In what follows Ω is a nonempty set; the power set of Ω, that is, the
set of all subsets of Ω will be denoted by 2Ω. Let Σ ⊂ 2Ω. By a size-
function, we mean a set-function λ : Σ → [0,+∞] that satisfies the
following conditions:λ(∅) = 0; and λ(A)  λ(A ∪ B)  λ(A) + λ(B)
whenever A,B in Σ. Obviously, any measure defined on a σ-ring is a
size-function. The length function defined on the σ-ring generated by
the bounded intervals in R is another example of size function. It is also
easy to see that an outer-measure is a size-function defined on Σ = 2Ω.

Given two sets E and F , we write E  F in place of E ∪ F when E and
F are disjoint. A Σ, λ-subpartition P of a subset A ⊂ Ω is any
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finite collection {E ∈ Σ;E ⊂ A} with the following properties:

1. λ(E) <∞ for all E ∈ P

2. E ∩ F = ∅ whenever E = F in P .

We denote by

P the subset of A obtained by taking the union of all

elements of P. A Σ, λ-subpartition P is said to be tagged if a point t ∈ E
is chosen for each E ∈ P . We shall write E = (E, t) if t is a tagging
point for E. We denote by Π(A,Σ, λ) the collection of all tagged Σ, λ-
subpartitions of the set A. The mesh or the norm of P ∈ Π(A,Σ, λ) is
defined to be P = max{λ(I) : I ∈ P}. If P,Q ∈ Π(A,Σ, λ), we say
that Q is a refinement of P and we write Q  P if Q  P and
P ⊂


Q. It is readily seen that such a relation does not depend on

the tagging points. It is also easy to see that the relation  is transitive
on Π(A,Σ, λ). For P,Q ∈ Π(A,Σ, λ) we quickly notice that if

P ∨Q := {I \

Q, I ∩ J, J \


P : I ∈ P, and J ∈ Q} ∈ Π(A,Σ, λ)

then P ∨Q  P and P ∨Q  Q. That is, the relation  has the upper
bound property on Π(A,Σ, λ). We then infer that the set Π(A,Σ, λ) is
directed by the binary relation . If there is no risk of confusion, we
shall drop λ in all of the above notations.

Given a function f : Ω→ X, and a tagged Σ-subpartition P in Π(A,Σ),
the (Σ, λ)-Riemann sum of f on P is defined to be the vector fλ(P ) =
(I,t)∈P λ(I)f(t). The function P → fλ(P ) is an X-valued net defined

on the directed set (Π(A,Σ, λ),). For convenience, we are going to
denote


A fdλΣ := lim

(Π(A,Σ,λ),)
fλ whether or not such a limit exists. The

limit is of course in the sense of the topology of X. If such a limit does
exist, we say that the function f is Σ, λ-integrable over the set A, and its
limit


A fdλΣ is called the Σ, λ-integral of f over A. Again we shall drop

the symbols Σ, λ whenever no risks of confusion arise. More formally,

Definition 3.1. We say that a function f : Ω→ X is (Σ, λ)-integrable
over a set A ⊂ Ω, if lim

(Π(A,Σ,λ),)
fλ represents a vector in X. The vector
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lim
(Π(A,Σ,λ),)

fλ will be denoted by

A fdλΣ and called the (Σ, λ)-integral

of f over the set A.

In other words, f : Ω→ X is (Σ, λ)-integrable over the set A with (Σ, λ)-
integral


A fdλΣ if for every N0 ∈ N0(X) there exists P0 ∈ Π(A,Σ, λ),

such that for every P ∈ Π(A,Σ, λ), P  P0 we have

fµ(Q) ∈


A
fdλΣ +N0. (1)

We shall denote by I(A,X,Σ, λ) the set of all (Σ, λ)-integrable functions
over the set A. Many classical properties of the integral follow immedi-
ately from the properties of net limits and therefore their proofs are
obtained at no extra cost.

Proposition 3.2. If f ∈ I(A,X,Σ, λ) then for every N0 ∈ N0(X) there
exists P0 ∈ Π(A,Σ) such that fλ(Q)W ∈ N0 for every Q ∈ Π(A,Σ) that
does not intersect P0 and such that Q  P0 .

Proof. Fix two neighborhoods N0, N of 0, such that N + N ⊂ N0.

Let P1 ∈ Π(A,Σ) be such that for every P  P1 in Π(A,Σ), we have
fλ(P ) ∈


A fdλΣ + N. Fix P0  P1. Then for every Q ∈ Π(A,Σ) that

does not intersect P0, and such that Q  P0, we have P0 ∨Q  P1,
and therefore

fλ,τ (P0 ∨Q) ∈


A
fdλΣ +N.

It follows that

fλ(Q) = fλ(P0 ∨Q)− fλ(P0)

= fλ(P0 ∨Q)−


A
fdλ+



A
fdλ− fλ(P0)

∈ N +N ⊂ N0.

The proof is complete. 
The above proposition suggests the following definition.

Definition 3.3. Let X be a topological vector space. A function f :
Ω → X is said to satisfy the Cauchy criterion for integrability on
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A ⊂ Ω if for every N0 ∈ N0(X) there exists P0 ∈ Π(A,Σ) such that
fλ(Q) ∈ N0 for every Q ∈ Π(A,Σ) that does not intersect P0 and such
that Q  P0 .
Thus Proposition 3.2 states that every integrable function satisfies the
Cauchy criterion for integrability. Conversely, we notice that for if P,Q ∈
Π(A,Σ) is such that no set in P intersects a set in Q, then fλ(P ∨Q)−
fλ(P ) = fλ(Q). It is then quickly seen that the Cauchy criterion for
integrability of a function f is equivalent to the Cauchy condition for
the net P → fλ(P ). It then follows that Cauchy nets taking values in
a complete topological vector space is convergent. Hence we have the
following characterization theorem.

Theorem 3.4. Let X be a locally bounded sequentially bounded topolog-
ical vector space. Then f ∈ I(A,X,Σ, λ) if and only if it satisfies the
Cauchy criterion for integrability on A.

It should be noticed that if the set A is such that λ(A) = 0, then for all
subpartitions P ∈ Π(A), λf (P ) = 0, and thus


A fdλ = 0. It follows that

the integral does not distinguish between functions which differ only on
set of size zero. More precisely,



A
fdλ =



A
gdλ whenever λ{x ∈ A : f(x) = g(x)} = 0.

Definition 3.5. We say that two functions f and g, both defined on a
set A are λ-essentially equal on A if λ{x ∈ A : f(x) = g(x)} = 0.

We shall use the notation f λ∼ g (or f = g λ-a.e.) to indicate that
λ{x ∈ A : f(x) = g(x)} = 0. It is readily seen that the relation f λ∼ g
is an equivalence relation on I(A,X, λ). We shall denote by I(A, λ,X)
the quotient space I(A,X, λ)/ λ∼ .
Our next result shows that if X is a topological vector space, then the
space I(A,X,Σ, λ) can also be naturally given a structure of topological
vector space. If f ∈ I(A,X, (Σ, λ)), for each N0 ∈ N0(X), we define a
neigborhood of f as follows

B(f, P,N0) := {g ∈ I(A,X,Σ, λ) : (g − f)λ(Q) ∈ N0, Q,Q ∩ P = ∅} .
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Theorem 3.6. The collection

B = {B(f, P,N0) : f ∈ I(A,X, (Σ, λ)), P ∈ Π(A,Σ, λ), N0 ∈ N0(X)}

is a basis for a topology on I(A,X,Σ, λ).

Proof. Let B(f, P1, N1) and B(g, P2, N2) be two elements in B, and let
h ∈ B(f, P1, N1) ∩ B(f, P2, N2). Then (h − f)λ(P ) ∈ N1 for all P that
does not intersect P1 and (h − f)λ(P ) ∈ N2 for all P that does not
intersect P2. It follows that for all P that does not intersect P1 ∨ P2 we
have (h − f)λ(P ) ∈ N1 ∩ N2, that is, h ∈ B(f, P1 ∨ P2, N1 ∩ N2). This
proves the theorem. 
We denote by Θ be the topology on I(A,X,Σ, λ)) generated by B.

Theorem 3.7. The vector space operations are continuous on the topo-
logical function space (I(A,X,Σ, λ), Θ).

Proof. Let B(h, P,N0) ∈ B. Suppose f + g ∈ B(h, P,N0). Then for
some 0 < λ < 1, we have (f+g−h)λ(Q) ∈ λN0 for all Q ∈ Π(A,Σ) that
does not intersect P. Let N1 ∈ N0(X) such that λN0 +N1 +N1 ⊂ N0.
Consider B := B(f, P,N1) × B(g, P,N1). It (f1, g1) ∈ B, then for all
Q ∈ Π(A,Σ) that does not intersect P, we have

(f1 + g1 − h)λ(Q) = (f + g − h)λ(Q) + (f1 − f)λ(Q) + (g1 − g)λ(Q)
∈ λN0 +N1 +N1 ⊂ N0.

This proves that the addition is continuous.

Now let α be a scalar and suppose that αf ∈ B(h, P,N0). Then for some
0 < λ < 1, we have (αf −h)λ(Q) ∈ λN0 for all Q ∈ Π(A,Σ, λ) that does
not intersect P. Let N1 ∈ N0(X) such that N1 ⊂ N0. Choose 0 < δ small
enough so that βN1+ δλN0 ⊂ N0. Consider N := B(α, δ)×B(f, P,N1).
It (β, g) ∈ N, then for all Q ∈ Π(A,Σ, λ) that does not intersect P, we
have

(βg − h)λ(Q) = (αf − h)λ(Q) + (βg − αf)λ(Q)
= (αf − h)λ(Q) + β(g − f)λ(Q) + (β − α)fλ(Q)

∈ λN0 + βN1 + δλN0 ⊂ N0.
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This proves that the the scaling function is continuous. The proof is
complete. 

Theorem 3.8. Let λ : Σ ⊂ 2Ω → [0,∞] be a size-function and let
be a locally boubded sequentally complete topologial vector space X. Let
A ∈ Σ be such that λ(A) <∞. Then every topological Cauchy net in the
function space (I(A,X, (Σ, λ)), Θ) also converges in (I(A,X,Σ, λ), Θ).

Proof. Let n → fn be a Cauchy sequence in (I(A,X, (Σ, λ)), Θ) . Fix
N0 ∈ N0(X) . Choose N00 ∈ N0(X) such that N00+N00+N00+N00 ⊂
N0. Let P ∈ Π(A,Σ, λ), and let N > 0 such that for m,n > N in N,

(fn − fm)λ(P ) ∈ N00. (2)

In particular, taking the subpartition P = {(A,ω)} , we see that the
sequence n → fn(ω) is Cauchy in X and therefore limn→∞ fn(ω) ∈ X.
We can then define a function ω → f(ω) = limn→∞ fn(ω).

On the other hand, since fn, fm ∈ I(A,X,Σ, λ), there exist two subpar-
titions Pn, Pm ∈ Π(A,Σ, λ) such that (fn)λ(P ) −


A fndλ ∈ N00, and

(fm)λ(P )−

A fmdλ ∈ N00 whenever P  Pn∨Pm. Combining with (2),

it follows that for m,n > N in N and for every P  Pn ∨ Pm, we have


A
fndλ−



A
fmdλ = (fn)λ(P )−



A
fndλ+ (fn − fm)λ(P )

+


A
fmdλ− (fm)λ(P ) ∈ N00.

This proves that the sequence n →

A fndλ is Cauchy in X, and thus

converges to say a ∈ X.
Now since for each ω ∈ A, f(ω) = limn→∞ fn(ω), there exists Nω > N
such that for m,n > Nω in N,

fn(ω)− fm(ω) ∈ λ(A)−1N00.

It follows that for P ∈ Π(A,Σ), and for m,n > max {Nt : (I, t) ∈ P} =:
NP , we have

(fn − fm)λ(P ) =


(I,t)∈P
λ(I)(fn(t)− fm(t)) ∈ N00.
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If we letm→∞, we obtain (fn−f)λ(P ) ∈ N00. Since a = limm→∞

A fmdλ,

there exists N > NP such that

A fmdλ − a ∈ N00 whenever m > N.

Thus for n,m > N, the vector

fλ(P )− a = (f − fn)λ(P ) + (fn − fm)λ(P ) + (fm)λ(P )

−


A
fmdλ+



A
fmdλ− a

belongs to N00 + N00 + N00 + N00 ⊂ N0. Since N0 is arbitrary, f ∈
I(A,X,Σ, λ) and


A fdλ = a. 

4. Lebesgue-Nikodym Theorem

We say that a set function F : Σ→ X is λ-absolutely continuous on Σ if
for every N0 ∈ N0(X), there exists δ > 0 such that F (A) ∈ N0 whenever
A ∈ Σ with λ(A) < δ. The classical Lebesgue-Nikodym theorem states
that for an additive real valued set function (not necessarily countably
additive) F : Σ → R, λ-absolutely continuity implies λ-Lebesgue dif-
ferentiability (see for example [1]). Such a result was extended to the
Banach space valued case in [6]. Our next result further extends such
a result to the case of functions taking values in a topological vector
space.

Theorem 4.1. Let X be a locally bounded sequentially complete topo-
logical vector space. Assume that every F : Σ → X is an additive
set function that is λ-absolutely continuous on Σ. Then there exists
f ∈ (I(A,X,Σ, λ), Θ) such that F (A) =


A fdλ for every A ∈ Σ, with

λ(A) <∞.

Proof.We may assume without loss of generality that Σ = 2Ω. Fix A ∈
2Ω, with λ(E) < ∞. For every subpartition P ∈ Π(Ω, 2Ω, λ), consider
the function defined on Ω by

FP (ω) =


I∈P

1I(ω)
λ(I ∩A)F (I ∩A).
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there exists N > NP such that

A fmdλ − a ∈ N00 whenever m > N.

Thus for n,m > N, the vector

fλ(P )− a = (f − fn)λ(P ) + (fn − fm)λ(P ) + (fm)λ(P )

−


A
fmdλ+



A
fmdλ− a

belongs to N00 + N00 + N00 + N00 ⊂ N0. Since N0 is arbitrary, f ∈
I(A,X,Σ, λ) and


A fdλ = a. 

4. Lebesgue-Nikodym Theorem

We say that a set function F : Σ→ X is λ-absolutely continuous on Σ if
for every N0 ∈ N0(X), there exists δ > 0 such that F (A) ∈ N0 whenever
A ∈ Σ with λ(A) < δ. The classical Lebesgue-Nikodym theorem states
that for an additive real valued set function (not necessarily countably
additive) F : Σ → R, λ-absolutely continuity implies λ-Lebesgue dif-
ferentiability (see for example [1]). Such a result was extended to the
Banach space valued case in [6]. Our next result further extends such
a result to the case of functions taking values in a topological vector
space.

Theorem 4.1. Let X be a locally bounded sequentially complete topo-
logical vector space. Assume that every F : Σ → X is an additive
set function that is λ-absolutely continuous on Σ. Then there exists
f ∈ (I(A,X,Σ, λ), Θ) such that F (A) =


A fdλ for every A ∈ Σ, with

λ(A) <∞.

Proof.We may assume without loss of generality that Σ = 2Ω. Fix A ∈
2Ω, with λ(E) < ∞. For every subpartition P ∈ Π(Ω, 2Ω, λ), consider
the function defined on Ω by

FP (ω) =


I∈P

1I(ω)
λ(I ∩A)F (I ∩A).
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Here 1I denotes the indicator function of the set I. Then it is easily seen
that FP ∈ (I(A,X,Σ, λ), Θ). The λ-absolute continuity of F ensures
that 

A
FPdλ =



I∈P
F (I ∩A) = F




I∈P
I ∩A


→ F (A) (3)

as λ(


I∈P
I ∩ A)→ λ(A). We claim that the net P → FP is Cauchy in

(I(A,X,Σ, λ), Θ). Fix N0 ∈ N0(X). Choose N00 ∈ N0(X) such that
N00 + N00 + N00 + N00 ⊂ N0. By the λ-absolutely continuity of F , we
can find P and Q so refined that

F




I∈P
I ∩A


− F






J∈Q
J ∩A



 = F






I∈P
I ∩A\



J∈Q
J ∩A



 ∈ N00.

(4)
For such P and Q, there exists R0 ∈ Π(A) such that for R  R0,

(FP )λ (R)−


A
FPdλ, (FQ)λ (R)−



A
FQdλ ∈ N00. (5)

It follows from (4), (5) that for R  R0,

(FP − FQ)λ (R) = (FP )λ (R)−


A
FPdλ+



A
FPdλ−



A
FQdλ

+


A
FQdλ− (FQ)λ (R) ∈ N0.

This proves our claim.

By Theorem 3.8, there exists f ∈ (I(A,X, (Σ, λ)), Θ) such that the net
P → FP converges to f . For a given N0 ∈ N0(X) , choose N00 ∈ N0(X)
such that N00+N00+N00 ⊂ N0. Then there exists P1 ∈ Π(A,Σ, λ) such
that for R  P1

(FP )λ (R)− fλ(R) ∈ N00. (6)

On the other hand, it follows from (3) that there exists P2 ∈ Π(A,Σ, λ)
such that for R  P2

(FP )λ (R)− F (A) ∈ N00. (7)
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Finally, by definition of the integral, there exists P3 ∈ Π(A) such that
for R  P3

(FP )λ (R)−


A
fdλ ∈ N00. (8)

Combining (6), (7), and (8), we have for R  P1 ∨ P2 ∨ P3


A
fdη − F (A) =



A
fdλ− fλ(R) + fλ(R)

− (FP )λ (R) + (FP )λ (R)− F (A) ∈ N0.

The desired result follows since N0 is arbitrary chosen in N0(X). The
proof is complete. 

Remark 4.2. Note that, unlike the Radon-Nikodym derivative of a vec-
tor measure [2], the above density function f need not be measurable.

A function f : A → X that satisfies the conclusion of Theorem 4.1 will
be called a λ-density of the set function F and the function F is then
said to be the λ-indefinite integral of f.

It goes without saying that if f : A → X is a λ-density of F , then any
function g : A→ X such that f = g λ-a.e. is also a λ-density of F . The
symbol dλF will be used to denote the class of all λ-density functions of
the set function F .

5. Fundamental Theorem of Calculus

Let now assume that the domain space Ω itself is a topological space,
and Σ ⊂ 2Ωcontains the open sets of Ω. We say that a size-function
λ : Σ ⊂ 2Ω → [0,∞] is

• regular if it is non-zero on open sets of Ω.

• translation invariant if λ(ω+U) = λ(U), for every U and for every
ω ∈ Ω.

Henceforth, we shall only consider a finite regular translation invariant
size-function. We introduce the following definition.
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Definition 5.1. Let Ω, X be locally bounded topological vector spaces
and λ : 2Ω → [0,∞) a regular translation invariant size-function. Let
Σ ⊂ 2Ω contain the topology of Ω. A set function F : Σ → X is said to
be λ-differentiable at a point ω ∈ Ω, if there exists a vector dF

dλ (ω) ∈ X
such that for every N0 ∈ N0(X), there exists U0 ∈ N0(Ω) such that for
every U ∈ N0(Ω) contained in U0

F (ω + U)
λ(U)

∈ dF
dλ

(ω) +N0.

We notice that when the set N0(Ω) is directed by inclusion, the state-
ment in the above definition corresponds exactly to the definition of the
net limit

dF

dλ
(ω) = lim

(N0(Ω),⊂)

F (ω + U)
λ(U)

.

We denote by ∆F the set of all ω ∈ Ω for which dF
dλ (ω) exists. We shall

call such a set ∆F the domain of differentiability of F. By the uniqueness
of limit, the correspondence ω → dF

dλ (ω) defines a function dF
dλ on ∆F

which we shall call the derivative of F with respect to λ, or simply the
λ- derivative of F . It is easily checked that dF

dλ is

• homogeneous on ∆F : for any scalar α, dFdλ (αF ) = α
dF
dλ (F ),

• additive in the sense that for any pair of set functions F,G : Σ→ X

, dFdλ (F +G)(ω) = dF
dλ (F )(ω) +

dF
dλ (G)(ω) for every ω ∈ ∆F ∩∆G

In this setting, to establish a FTC is equivalent to finding necessary and
sufficient conditions under which the λ-derivative dF

dλ of an additive set
function F is an element of the class of λ-density functions dλF. More
formally, we say that

Definition 5.2. The FTC holds for an additive set function F : Σ ⊂
2Ω → X if dFdλ ∈ dλF.

We are now ready to state and prove our version of FTC for set functions
taking values in complete locally bounded topological vector spaces.

Theorem 5.3. Let Ω, X be locally bounded sequentially complete topo-
logical vector spaces. Letλ : 2Ω → [0,∞) be a regular translation invari-
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ant size-function. Then the following statements are equivalent for an
additive λ-differentiable set function F : Σ ⊂ 2Ω → X .

1. For every N0 ∈ B0(X), there exists P0 ∈ Π(Ω, λ) consisting of
elements of

A0 =

(I, ω) ∈ Π(Ω, λ) : F (I)− λ(I)dF

dλ
(ω) ∈ N0



such that whenever P  P0,


(I,ω)∈P\A0

F (I) ∈ N0, and


(I,ω)∈P\A0

λ(I)
dF

dλ
(ω) ∈ N0.

2. dF
dλ ∈ dλF .

Proof.
1.⇒ 2. Since λ(Ω) <∞, we may assume all the subpartitions P ∈ Π(Ω)
are partitions by simply adjoining if necessary the complement of


P.

Fix N0 ∈ B0(X). Let P0 ∈ Π(Ω) as in 1. Then by the additivity of F we
have for P  P0,

F (Ω)−

dF

dλ



λ

(P ) =


(I,ω)∈P
F (I)−



(I,ω)∈P
λ(I)

dF

dλ
(ω)

=


(I,ω)∈P∩A0


F (I)− λ(I)dF

dλ
(ω)



+


(I,ω)∈P\A0

F (I)−


(I,ω)∈P\A0

λ(I)
dF

dλ
(ω)

∈


(I,ω)∈P∩A0

λ(Ii)N0 +N0 +N0 ⊂ (λ(Ω) + 2)N0.

Since N0 ∈ B0(X) is arbitrary, this shows that dF
dλ ∈ I(Ω, X, λ) and

Ω
dF
dλ dλ = F (Ω). This proves 1.⇒ 2. .

2.⇒ 1. Assume that dF
dλ ∈ dλF. Then in particular

dF

dλ
∈ (I(A,X,Σ, λ), Θ) .
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Fix N0 ∈ B0(X) and let N00 ∈ B0(X) such that N00 +N00 ⊂ 2N0. Let
Ek =


ω ∈ Ω : dFdλ (ω) ∈ kN00 \ (k − 1)N00


. There exists Pk,0 ∈ Π(Ω)

such that for every P  Pk,0,



(I,ω)∈P
(F (I)− λ(I)f(ω)) ∈ 1

k2k+1
N00.

For each n ∈ N, let

fn(ω) =


dF
dλ (ω) if ω ∈

n
k=1Ek

0 otherwise.

Then for P 
n
k=1 Pk,0, we have



(I,ω)∈P\A0

λ(I)fn(ω) ∈


(I,ω)∈P\A0

λ(I)kN00

⊂


(I,ω)∈P\A0

k (F (I)− λ(I)f(ω)) ⊂ 1
2
N00.

On taking the limit as n→∞, we infer that



(I,ω)∈P\A0

λ(I)fn(ω) ∈
1
2
N00 ⊂ N0.

It then follows that


(I,ω)∈P\A0

F (I) ⊂


(I,ω)∈P\A0

(F (I)− λ(I)f(ω)) +


(I,ω)∈P\A0

λ(I)f(ω)

⊂ 1
2
N00 +

1
2
N00 ⊂ N0.

The proof is complete. 
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