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Abstract
Scattering rates arising from the interactions of electrons with bulk longitudinal optical 
(LO) phonon modes in a hollow cylinder are calculated as functions of the inner radius 
and the uniform axial applied magnetic field. Now, the specific nature of electron-phonon 
interactions mainly depends on the character of the energy spectrum of electrons. As is 
well known, in cylindrical quantum wires, the application of a parallel magnetic field lifts 
the double degeneracy of the non-zero azimuthal quantum number states; m ≠ 0 ; irrespec-
tive of all electron’s radial quantum number l states. In fact, this Zeeman splitting is such 
that the m < 0 electron’s energy subbands initially decrease with the increase of the paral-
lel applied magnetic field. In a solid cylinder, the lowest-order; { l = 1;m = 0 } subband 
is always the ground state. In a hollow cylinder, however, as the axial applied magnetic 
field is increased, the electron’s energy subbands take turns at becoming the ground state; 
following the sequence {m = 0,−1,−2... − N} of azimuthal quantum numbers. Further-
more, in a hollow cylinder, in general, the electron’s energy separations between any two 
subbands are less than the LO phonon energy except for exceptionally high magnetic 
fields, and some highest-order quantum number states. In view of this, the discussion of 
the energy relaxation here is focused mainly on intrasubband scattering of electrons and 
only within the lowest-order { l = 1;m = 0 } electron’s energy subband. The intrasubband 
scattering rates are found to be characterized by shallow minima in their variations with 
the inner radius, again, for a fixed outer radius. This feature is a consequence of a balance 
between two seemingly conflicting effects of the electron’s confinement by the inner and 
outer walls of the hollow cylinder. First; increased confinement of the charge carriers gen-
erally leads to the enhancement of the rates. Second; the presence of a hole in a hollow cyl-
inder leads to a significant suppression of the scattering rates. The intrasubband scattering 
rates also show a somewhat parabolic increase in their variations with the applied magnetic 
field; an increase which is more pronounced in a relatively thick hollow cylinder.
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1 Introduction

The rapid advancement in fabrication technologies (Liang et al. 2019; Fu et al. 2020) as 
well as experimental design (Beenakker et al. 1991; Kim and Olendski 1996) has led to 
a great deal of renewed interest in the interactions of confined electrons with the vari-
ous crystal excitations, especially in semiconductors (Peeters and De Boeck 1999). The 
renewed interest is in part stimulated by potential device applications (Fu et  al. 2020; 
Khalef et al. 2020; Beretta et al. 2020), which mainly rely on reduced phase space of the 
charge carriers (Sakaki 1980). As such, the nature of other physical quantum mechani-
cal quantities depends on the specific dynamics of the confined electrons, which in turn is 
largely determined by the overall potential of a given system. The overall potential of low-
dimensional systems falls into two broad categories: a) Confinement of the charge carriers 
may be due to the intrinsic electric potential of the fabricated nanostructures (Tonucci et al. 
1992; Goldberger et al. 2003). This form of the potential depends on the specific topology 
or even the geometrical symmetry of the quantum structure (Santos et al. 2005; Filikhin 
et  al. 2006). For example, the angular momentum of an electron is inherently quantized 
in integral units of Planck’s constant in cylindrical nanosystems but not necessarily so in 
plano-wall quantum wells. b) Additional confinement of electrons may also be due to the 
vector potential, in general, of a spatially inhomogeneous applied magnetic field (Badran 
and Ulloa 1999; Reijniers et al. 2001; Masale 2004, 2008). The other factor which plays 
a crucial role in the specific character of the properties of the confined charge carriers is 
the orientation of an applied magnetic field relative to the interface of a heterojunction 
(Masale 2004, 2008). In recent years, there has been a surge of interest in carbon nano-
tubes, which almost overshadows that of their semiconductor counterparts; very thin cylin-
drical shells. Apart from their comparatively high geometrical regularity, carbon nanotubes 
display a broad range of electronic, thermal and structural properties that change depend-
ing on their dimensions and chirality (Saeed and Khan 2013). Indeed, it is envisaged that 
carbon nanotubes are formidable candidates for future nanodevice applications. Notwith-
standing this greater potential of carbon nanotubes for future nanotechnologies, the physics 
of semiconductor nanostructures continues to attract attention of among researchers (Hien 
et al. 2017), and the other references therein. In part, this is because carbon nanotubes can 
indeed exhibit either metallic or semiconductor properties, as stated earlier, depending on 
their dimensions and chirality.

Scattering of electrons by phonons, particularly via polar LO modes, is one of the most 
important energy relaxation processes in low-dimensional systems (Alcalde and Weber 2000; 
Bai et al. 2019; Quoc and Dinh 2019). For example, it plays a significant role in decoherence 
in quantum computing (Fotue et al. 2015; Khordad and Ghanbari 2017; Tiotsop et al. 2018), 
in promoting stable hot carrier population in solar cells (Garg and Sellers 2020) and in pho-
toluminescence (Ding et al. 2017). Even though phonons can be responsible for the decoher-
ence of qubits (Kornich et al. 2018), there is some indication that they may also play a posi-
tive role in the quantum information industry. Research has shown that robust coherence can 
be maintained in a double quantum dot system due to the presence of phonons (Purkayastha 
et al. 2020). Recently, phonons have been used to couple distant quantum systems, facilitating 
quantum entanglement of two qubits (Bienfait et al. 2019). This transfer of coherent phon-
ons has also been observed experimentally between bismuth nanofilms and a glass substrate 
(He et al. 2020). Studies of longitudinal optical phonons in GaAs∕AlxGa1−xAs quantum core-
shell wires have shown that phonons influence the mobility of electrons, and that mobility 
can be achieved by core-shell wires of thicker shells (Dat and Hai 2019). Longitudinal optical 
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phonons have also been shown to reduce binding impurity energies in spherical core/shell 
quantum dots (Talbi et al. 2021). Phonon modes are influenced by topology, and the Möbius 
topology has been shown to give rise to phonon band gaps (Nishiguchi and Wybourne 2018). 
Phonon band gaps can be useful and have been utilized to block resonant decay of defect 
states, thereby protecting qubits (Rosen et al. 2019). There are various modes of the phonon 
spectrum in low-dimensional structures; among these; the bulk-like confined modes and the 
interface modes (Hai et al. 1993). Now, the total electron-phonon scattering rate; assumed to 
be the sum of the contributions of the above mentioned individual phonon modes; has been 
found to be more or less equal to the value obtained using the bulk phonon spectrum (Mori 
and Ando 1989; Rücker et al. 1992; Register 1992). Understanding scattering rates is crucial 
since other quantities depend on them, from example, phonon-drag thermopower (Tsaousidou 
2019) and thermal conductivity (Feng and Ruan 2018; Zhu et al. 2019; Dongre et al. 2020). 
There are now numerous well established experimental techniques for probing electron-pho-
non interactions; including spectroscopic measurements (Mirlin and Perel 1992; Tsen et al. 
1998) and femtosecond time-resolved differential transmission (Schumacher et al. 1996).

The main aim of the investigations undertaken here is to evaluate the ground-state intrasu-
bband electron-LO-phonon scattering rates as functions of axial applied magnetic field in a 
hollow cylinder. The scattering rates are evaluated assuming the bulk phonon spectrum and 
within the framework of the Fröhlich interaction Hamiltonian, rather in the spirit of Mori and 
Ando (Mori and Ando 1989). As remarked earlier, new features of the quantum properties of 
the confine charge carriers emerge merely as a consequence of altering the topological sym-
metry of a quantum system (Masale 2003). It is worth mentioning that the character of quan-
tum processes involving electrons to a large extent depends on the specific nature of the elec-
tron’s energy spectrum. As mentioned earlier, the specific character of the electron’s spectrum 
itself depends on the overall confinement as well as the geometrical symmetry of the system 
considered. In this regard, of particular interest here, at least qualitatively, is how the topologi-
cal evolution from a solid to a hollow cylinder influences the ground-state intrasubband scat-
tering rates.

2  Electron states

The system studied here is a long hollow cylinder of inner and outer radii R1 and R2, respec-
tively, immersed in a uniform axial applied magnetic field � = (0, 0,B). The two forms of 
the potential considered are the vector potential: � = (0,

1

2
B�, 0) of the uniform axial applied 

magnetic field, and the so-called electric potential; taken in the form:

and infinity elsewhere. The parameter �o is the angular frequency of a simple harmonic 
oscillator of effective mass �; assumed to be equal to that of an electron in a semiconduct-
ing material. This form of the electric potential resembles somewhat the true potential of 
a heterojunction formed between AlGaAs and GaAs (Schlesinger et al. 1983). In view of 
cylindrical symmetry, the electron’s wave function corresponding to the � th radial and mth 
azimuthal quantum numbers is taken in the general form:

(1)V(�) =
1

2
��2

o
(�2 − R

2

1
) for R1 ≤ � ≤ R2,

(2)�
�m = CN exp(ikzz) exp(im�)�(�) m = 0,±1 ± 2 ± 3...,
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where k
z
 is the electron’s axial wavenumber and CN is the nomalization constant. The 

Schrödinger equation for this system is solvable in terms of the confluent hypergeometric 
function. In particular, � is taken as a linear combination of the M and U confluent hyper-
geometric functions:

where A and B are constants, which are determined from the application of boundary con-
ditions. The particular parameters a and b and the argument � of the confluent hypergeo-
metric function are given as follows

where

in which �
c
= eB∕� and ac = (ℏ∕eB)

1

2 are the cyclotron parameters of the frequency and 
the radius of a particle of charge e,  respectively. The application of the boundary condition 
of continuity of � across the surfaces of the hollow cylinder: � = Ri; i = 1 or 2;  leads to 
the following eigenvalue equation for the determination of the electron’s subband energies

where �R is given by Eq. (4) for � but with the appropriate replacement: � = Ri.

Figure 1 shows the variations of some few lowest-order electron’s confinement energy 
subband segments with the applied magnetic field in a hollow cylinder of radii R1 = 50Å 

(3)� = � |m|∕2 exp(−�∕2)[AM(a, b, � ) + BU(a, b, � )],

(4)

a =
1

2
+

1

2
|m| −

[
E
�m

+
1

2
��2

o
R
2

1
−

1

2
mℏ�

c

]
∕ℏ�� , b = |m| + 1 and � =

�

2ℏ2
ℏ���

2,

(5)�� =

√
�2
c
+ 4�2

o
,

(6)U(a, b, �R1
)M(a, b, �R2

) − U(a, b, �R2
)M(a, b, �R1

) = 0,

Fig. 1  Variations of some few 
lowest-order ({� = 1, |m| ≤ 2}) 
electron’s confinement energy 
subbands with the applied mag-
netic field in a hollow cylinder of 
radii R1 = 50Å and R2 = 300Å. 
The other relevant parameters are 
ℏ�

o
= 8.6meV and � = 0.067m

e
 

where m
e
 is the free-electron 

mass. The different subband 
energies are identified by their 
azimuthal quantum numbers 
indicated there; ranging from 
m = −2 up to m = 2. In particu-
lar, the dashed curves correspond 
to negative azimuthal quantum 
numbers
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and R2 = 300Å. The other relevant parameters are ℏ�
o
= 8.6meV and the effective-mass 

of the electron, relevant to the system of GaAs, is taken to be roughly 0.067 times that of 
the free electron (me). Finally, the different energy subbands, all for � = 1, may be iden-
tified according to their increasing intercepts by their azimuthal quantum numbers as 
m = 0, ± 1 and ±2. In particular, the dashed curves correspond to m = −1 and m = −2 for 
the lower and higher curves, respectively. Note the Zeeman splitting of the same non-zero 
|m| subbands, which are otherwise doubly degenerate in the absence of an axial applied 
magnetic field. However, in contrast to the analogous results of a solid cylinder, the charac-
ter of a single-electron energy spectrum of a hollow cylinder immersed in a parallel applied 
magnetic field is such that the {m = 0,� = 1} energy subband is not always the ground 
state. As the magnetic field is increased, instead, there arises a sequence of the ground state 
energy subbands corresponding to the series; {m = 0, − 1, − 2, − 3...} of the azimuthal 
quantum numbers (Masale et  al. 1992; Masale 2000). This essentially means that the 
energy separations between the m ≤ 0 energy subbands initially decrease with the increas-
ing magnetic field. The energy subbands characterized by the m ≥ 0, however, increase 
monotonically with an increase of the axial applied magnetic field.

Figure  2 shows the variations of some few lowest-order ({� = 1, |m| ≤ 2) electron’s 
confinement energy subbands with the inner radius of the hollow cylinder for B = 20T  
and a fixed outer radius: R2 = 300Å. The other relevant parameters are as for Fig. 1. The 
various curves stack up, at say R1 = 70Å, according to their increasing azimuthal quantum 
numbers ranging from −2 to m = 2. As anticipated, the subband energies increase with the 
decrease of the thickness of the hollow cylinder, due to the increased ‘compression’ of the 
wavefunction. The intersubband energy separations, however, decrease with the decrease 
of the thickness of the cylindrical shell. This is because in a very thin hollow cylinder, 
confinement by the walls of the hollow cylinder is much stronger than that due to the axial 
applied magnetic field. This is to say that in the regime of ultra thin cylindrical shells, 
the subband energies are somewhat insensitive to either the applied magnetic field or the 

Fig. 2  Variations of some few 
lowest-order ({� = 1, |m| ≤ 2) 
electron’s confinement energy 
subband with the inner radius 
of the hollow cylinder for 
B = 20T  and a fixed outer radius: 
R2 = 300Å. The other relevant 
parameters are as for Fig. 1. The 
various curves stack up, at say 
R1 = 70Å, according to their 
increasing azimuthal quantum 
numbers ranging from −2 to 
m = 2, as indicated there
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electron’s subband azimuthal quantum numbers. It should also be recalled that unlike in a 
solid cylinder, the boundary condition of continuity of the wavefunction at R1 in a hollow 
cylinder drastically changes the phase of the {� = 1,m = 0} electron’s eigenfunction there.

3  Electron‑LO‑phonon scattering rates

Rather briefly, lattice displacements in the optic longitudinal mode produce a macroscopic 
electric field, � = −∇�, which couples electrons to the lattice vibrations through the scalar 
potential �. As mentioned earlier, the evaluations of the scattering rates here, are carried 
out employing the Fröhlich interaction Hamiltonian, H

int
= −e�, given by (Fröhlich 1954):

where �q and �†
q
 are the phonon creation and annihilation operators, respectively, R is the 

position vector and C(q) is a coupling factor, which for LO-phonons, is given by

in which �o is the permittivity of free space. The other parameters, relevant to the system 
of GaAs, are the high- and low-frequency dielectric constants �∞ = 10.9 and �s = 13.1 , 
respectively. Finally, �L is the LO-phonon zone-center frequency, corresponding to the 
LO-phonon energy quantum: ℏ�

L
= 36.6meV . The two basic processes described by this 

interaction Hamiltonian are annihilation or creation of a bulk phonon of wave vector �, 
with axial (qz) and off-axial (qr) components such that q2 = q2

r
+ q2

z
. Either of these pro-

cesses is accompanied by a change of state of the electron, from the initial ��,m, k
z
⟩ to 

the final ��′,m′, k′
z
⟩. For these processes occurring in quasi-one-dimensional systems, over-

all conservation of the axial momentum is prescribed by k�
z
= kz + qz and k�

z
= kz − qz for 

absorption and for emission of a phonon, respectively. The system considered here is an 
addition to the family of systems with cylindrical symmetry for the closely related inves-
tigations on electron phonon interactions (Masale 2003; Masale and Constantinou 1993; 
Leão et al. 1993) and are included here only for completeness. In particular, the emission 
� em scattering rates are given by

where n(�L) = [exp(ℏ�L∕kBT) − 1]−1 is the usual temperature-dependent Bose-Einstein 
distribution function, in which kB is the Boltzmann constant. The interaction integral is 
given by

where the dimensionless radial distance and the reduced radial phonon wavenumber are 
given by x = �∕R2 and y = q�R2, respectively. The other variables appearing in equation 
(9) are the scaled energies:

(7)Hint =
∑

q

C(q)
[
�q exp(iq.R) + �†

q
exp(−iq.R)

]
,

(8)C(q) =
i

q

[
(e2ℏ�L∕2�oVC)(�

−1
∞

− �−1
s
)

]1∕2
,

(9)� em =
2�o[n(�L) + 1]
√
�i − (1 − ��) ∫

∞

0

y�I
�m��m� (y)�2

�
1

y2 + Q2
+

+
1

y2 + Q2
−

�
dy,

(10)I
�m��m� (y) =

∫

1

R1∕R2

xJ|m−m�|(yx)��m(x)�
∗

��m� (x)dx,
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as well as the scaled phonon wavenumbers

wherein the plus (+) and minus (−) signs refer to forward and backward scattering of pho-
nons, respectively. Finally, the characteristic scattering rate �o (typically 8.7 × 1012 s−1, for 
GaAs) is defined in terms of the Fröhlich coupling constant, �, according to:

It is worth mentioning that intersubband scattering can be crucial in determining the life-
times of the electronic states. However, the main results of these investigations; the scat-
tering rates; are illustrated only for transitions within the {� = 1,m = 0} electron’s energy 
subband. As such, in most cases of practical interest, these are usually the strongest transi-
tions. For the system considered here, in general, the intersubband energy separations are 
less than the LO-phonon energy quantum except for high values of the applied magnetic 
fields and large differences of the subband quantum numbers (Masale et al. 1992). Apart 
from these somewhat extreme cases therefore, intersubband emission scattering of an LO-
phonon in general would be forbidden. In loose terms, the electron simply does not have 
enough energy to emit an LO-phonon whenever the electronic intersubband energy separa-
tions are less than the phonon energy quantum. Now, the variations of the absorption scat-
tering rates with the applied magnetic field, although much lower, have been found to be 
the same as those of the corresponding emission rates. The numerical results for absorption 
rates are thence not shown here, for brevity.

Figure  3 shows the variations of the room-temperature (T ∼ 300K) {� = 1,m = 0} 
intrasubband reduced emission scattering rates (� em∕�o) with the inner radius (R1) 

(11)�i = Ek∕ℏ�L and �� = [|E
�m − E

��m� |]∕ℏ�L

(12)Q± =

�
(2��LR

2
2
∕ℏ)

�√
�i ∓

√
�i − 1 + ��

�
,

(13)�o = 2��L = e2∕(4��oℏ)[�
−1
∞

− �−1
s
][2��L∕ℏ]

1∕2.

Fig. 3  The room-temperature 
(T ∼ 300K) {� = 1,m = 0} 
intrasubband reduced emis-
sion scattering rates versus the 
inner radius for some few values 
of the applied magnetic field 
shown there. The curves stack-
up according to the increasing 
values of the magnetic: B ∼ 0T  
for the lowest, then increasing 
in steps of 5T up to 20T for the 
highest curves, respectively. The 
key relevant parameters are as for 
Fig. 1 except �

i
= 1.001
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for some few values of the applied magnetic field. The key relevant parameters are as 
for Fig. 1, in particular, R2 = 300Å. The additional relevant parameter is the so-called 
axial electron’s kinetic energy: �i = 1.001, taken to be just in excess of the LO phonon 
energy quantum. The curves stack-up according to their corresponding values of the 
applied magnetic field used: B ∼ 0T  for the lowest curve, then increasing in steps of 
�B = 5T  up to 20T for the highest curve. Note that the intrasubband scattering rates 
are higher for larger values of the axial applied magnetic field particularly in relatively 
thick hollow cylinders. This is to say that the scattering rates become more enhanced 
with increased confinement of the electron by the applied magnetic field. It is also seen 
that the intrasubband scattering rates initially decrease rapidly and are characterized by 
shallow minima in their variations with the inner radius. Now, the nature of these scat-
tering rates is determined by a balance between two conflicting factors resulting from 
increasing R1, for a fixed outer radius. First, these become enhanced with increased 
confinement by the walls of the hollow cylinder. Second, the scattering rates become 
increasingly suppressed because of the ‘dilation’ of the forbidden region (� ≤ R1) for 
the motion of the electrons (Masale 2003). Note that the evolution from a solid to a 
thin shell (increasing R1 ) may be regarded as perturbing the quasi-one-dimensionality 
of the electronic density of states of a solid cylinder. This is the effect that is thought 
to lead to the quenching of the coherence of the electron-phonon Fröhlich coupling 
(Fröhlich 1954).

Figure 4 depicts the variations of � em∕�o with B for some few values of the thick-
ness of the hollow cylinder. The other relevant parameters, except for R1, are as for 
Fig. 3. For ease of presentation of the results, Fig. 4a, b may be regarded as depicting 
the results for the regime relatively thick and thin hollow cylinders, respectively. The 
curves in Fig.  4 stack-up according to the increasing thickness of the hollow cylin-
der, essentially varying R1, for a fixed outer radius: R2 = 300Å. To be more precise, in 
Fig. 4, the highest curve corresponds to R1 = 50Å, the inner radius then increased in 
steps of 10Å up to R1 = 140Å for the lowest curve. Following the reverse trend of the 
stacking-up of the various curves, in Fig. 4b, the inner radius ranges from R1 = 150Å 
for the lowest curve up to R1 = 200Å for the highest curve. Again, it is worth com-
menting that the intrasubband scattering rates are generally somewhat insensitive to 
the electron’s subband azimuthal quantum numbers. In particular, unlike the Zeeman 
splitting of the ±m electron’s energy subbands by the axial applied magnetic field, the 
corresponding results for the intrasubband scattering rates are still doubly degener-
ate. In other words, despite the difference in the corresponding electron’s energies 
�E

�m = E
�|m| − E

�−|m| = ℏ�c, the relevant parameters a and b of the radial eigenfunc-
tions of any such pair of azimuthal quantum numbers are exactly the same. In general, 
the intrasubband scattering rates increase with the increase of the axial applied mag-
netic field, particularly in the regime of relatively thick hollow cylinders. This feature 
is confirmed by Fig. 4b wherein as the applied magnetic field is increased, the scatter-
ing rates for smaller R1 rise above those corresponding to a larger inner radius. This 
behaviour is reminiscent of the m ≤ 0 energy subbands taking turns at becoming the 
ground state as the axial applied magnetic field is increased, although here the azi-
muthal quantum number remains the same. As mentioned earlier, this behaviour of the 
scattering rates is essentially a signature of the presence of an inner forbidden region 
(𝜌 < R1) for the motion of the charge carriers under the influence an axial applied mag-
netic field. In other words, it is a consequence of a topological evolution of a solid into 
a hollow cylinder.
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4  Conclusions

Electron-LO-phonon scattering rates of a hollow cylinder were calculated as functions 
of the inner radius as well as the axial applied magnetic field, assuming bulk LO-phonon 
modes. Now, the nature of quantum processes is largely dependent on the dispersion of the 
excitations involved. To this end, a resume was given of the energy spectrum of an elec-
tron confined in a hollow cylinder within the effective-mass approximation. The nature of 
this Zeeman splitting in a hollow cylinder is such that the {� = 1,m ≤ 0} electron’s energy 

Fig. 4  a Variations of � em∕�
o
 

with B for some few values of the 
thickness of the hollow cylinder. 
The other relevant parameters, 
except for R1, are as for Fig. 3. 
The curves stack-up according 
to the increasing thickness of 
the hollow cylinder such that 
R1 = 140Å for the lowest curve, 
then decreasing in steps of 10Å 
down to R1 = 50Å for the highest 
curve. b Same caption as for 
a except for the larger values 
of the inner radius used. Here, 
the curves stack-up according 
to the decreasing thickness of 
the hollow cylinder such that 
R1 = 150Å for the lowest curve, 
then increasing in steps of 10Å 
up to R1 = 200Å, for the highest 
curve
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subbands take turns at being the ground state, as the magnetic field is increased; following 
the sequence {m = 0, − 1, − 2...} of the azimuthal quantum numbers. The energy separa-
tions between the various electron’s energy subbands of a hollow cylinder, by and large, 
were found to be less than the LO phonon energy quantum except for exceptionally high 
magnetic fields. The discussions of the results were thence focused on the lowest-order 
{� = 1,m = 0} intrasubband scattering rates. These were deemed to be the most probable 
and in a sense representative of the ground-state intrasubband scattering rates. The lowest-
order intrasubband scattering rates were found to increase with the increase of the axial 
applied magnetic field; notably for relatively thick hollow cylinders. The enhancement of 
the scattering rates is attributable to the increased confinement of the charge carriers due to 
the increase of the parallel applied magnetic field. The lowest-order scattering rates were 
also found to decrease with the increase of the inner radius but for a fixed outer radius, 
and for some few values of the applied magnetic field. An interesting feature is that the 
scattering rates are much enhanced for large values of the magnetic field and relatively 
thick hollow cylinders. Furthermore, in a very thin hollow cylinder, curves of the scatter-
ing rates corresponding to the different values of the magnetic field tend to merge. This 
effect signifies much stronger confinement of the electrons by the walls of the hollow cyl-
inder than by the magnetic field. In general, the intrasubband scattering rates were found 
to possess shallow minima in their variations with the inner radius; for a fixed outer radius. 
These minima arise from a balance between the following two factors related to the topo-
logical evolution from a hollow to a solid cylinder. First, the enhancement of the scattering 
rates due to increased confinement of the walls of the hollow cylinder upon decreasing its 
thickness. Second, the quenching of the scattering rates arising from an expansion of the 
inner forbidden region for the motion of the charge carriers. As such, an increase of the 
above mentioned region may be regarded as breaking the quasi-one-dimensionality of elec-
tronic density of states; as would be the case in a solid cylinder. As a final comment, the 
results presented here give at least a semi-qualitative picture of the nature of the intrasub-
band electron-LO-phonon transitions in cylindrical systems. The character of these transi-
tions should provide information required in the engineering of potential application of 
nanoscale devices.
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