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Absiract
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wse ol eiolel yscised COD data as o Tack ground boage is foand o opeose the ioter polabion as compared o the sstimation based on
chacrved point raiafall data alone, The studs revealed the improsement in tesms of Masb—SuieilMe mode] performance index (751 by
vaing OO as esterna’ drift with kriging provided ar B of 64.5% comparsd o the sepk krgiag and ordirary krigiag, which performed
wilk efficienay af 600V and 6 LAY, respectivdy, For each case, parameler sndtivity analvss was conducted o investigate the el of

the changs in the parumeters cn the mede. performance and the ssatio tavporal interpoloation resclis
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1. Introduction

The development of a model to reproduce observed
rainfall variation in space and time and its relationship
with remote-sensing based rain-producing cloud informa-
tion in the basin is of particular interest to understanding
atmosphere-ecosystem interaction in a typical tropical cli-
matic region of Africa. This signifies the importance of spa-
tially interpolated rainfall data as the main input of the
hydrological cycle and water balancing at a watershed or
basin scale. Possible improvement in rainfall interpolation
at a4 basin scale using the time-series of the cold cloud dura-
tion (CCD) data are reported by several authors (e.g.
Grimes and Diop, 2003). The link between rainfall and
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vegetation dynamics in-turn advances our understanding
of various crop growth dynamics and agricultural produc-
tion for large areas (e.g. Hill and Donald, 2003; Reynolds
etal., 2000; Diallo et al., 1991; Sannier et al., 1998; Kobay-
ashi and Dwye, 2003).

The significance of spatial distribution of rainfall and its
effects on spatial correlation functions are reviewed in
Bacchi and Kottegoda (1995). The same authors review a
number of statistical terms and properties with reference
to the theory of variograms originally adopted in geostatis-
tics. The association of small time step rainfields and strong
spatial varability in the conwvective nature of tropical
rainfalls is investigated in Amani and Lebel (1998). This
situation undermines the interpolation of connective rain-
fall by classical two-dimensional (2D) algorithms. Rather,
Amani and Lebel (1998) developed a lagrangian approach,
based on interpolation of arrival times of rainfall.



S.A. Moger et al. | Physies and Chemilstry of the Eargh 32 (2067) 075-083 977

Daily rainfall is measured in the Rufiji basin at a num-
ber of sites (point measurements) but often it is necessary
to estimate average areal rainfall over an area of interest.
This cam be done by variows methods of spatial interpola-
tion such as simple arithmetic average, Thiessen polypon,
and knging. The arithmetic mean value or values that are
based on other spatial interpolation techniques do not
address the wariation in all climatic zones of the basin.
For instance, the Thiessen polvgon method provides spa-
tial varation that depends only on distances betwesn sta-
tions for swh large drainage basins of complex
hydroclimatology. This work is concerned with the appli-
cation of kriging, which is a geostatistical imterpolation
technique that considers other factors that affect rainfall
processes  and  the  spatial  variation  of rainfall
MEAsUramants,

In this study we explore the suitability of kriging tech-
nigues for spatial interpolation of rainfall with a view to
achiewe the following objectives: (i) to idemtify the most
suitable krging model for interpolation of rainfall in a
tropical watershed, the Rufiji basin, (ii) to establish a suit-
able set of vanogram parameters for future use in the
basin, (iii) to develop a custom built, fully automated, com-
puter program of raimfall interpolation for the Rufiji basin
based on the results of the previous two steps, and (iv) to
investigate the use of freely available cold cloud duration
data (CCD) to improve the spatial interpolation of rainfall
given that maintenance of manual rain gauges is gradually
becoming difficult,

The goal of this study was to use CCD remotely sensed
data and field rainfall data to obtain a spatially consistent
rainfall map over a large drainage basin that could be wsed
for hydrological and water resources modelling for the
Rufiji Drainage Basin in Tanzania (Fig. 1). In this study
warious deterministic geostatistical techniques are investi-
pated and implemented for spatial data interpolation.
These include kriging (K}, coknging (CK), krging with
an external drift (KED) {Deutsch and Joumel, 1998
Goovaerts, 1997). We selected these thres imstructive
approaches, namely K, CK and KED from Deutsch and
Journel (1998) and Goovaerts (1997) to investigate their
performance in terms of model efficiency and other uncer-
tmntp' CriteEna.

The use of satellite infrared imagery for rainfall analysis
is very important for at least two reasons. First, cument
sparse rain gauge networks ower central portions of the
basin do not provide the basic resolution reguired to
describe the spatial distribution of rainfall over the basin.
Secondly, the background spatially distribuated data esti-
mated from satellite data can bz emploved to estimate
the rainfall distribution and hence mainta ining the hetero-
geneity of rainfall over the basin.

2. The study area
The Rufiji River basin lies between longitudes 32.5% and

40® East and latitudes 3.5° and 10.5% South. I't is the largest
river basin in Tanzamia (Fig. ) covering an area of about
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Fig. |. Distribution of rainguge stations in the Bufiji basin and with their mean anmeal rainfall in mm. The symbals wpresent rain gange stations and

indicated amounts of MAP.
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177,000 km® and extending 700 kms from Mbeya region in
the West to the Indian Ocean in the East. The Rufiji River
basin consists of three sub-basins; the Great Ruaha, the
Leivegu, and the Kilombero sub-basin which constitute
AT, 18%, and 20%s, respectively, of the total area of the
Rufiji basin. The basin is situated predominantly im the
semi-and belt, which runs from Morth to South through
the central portion of Tanzania. The land cover of the
study area is dominated by 92 scattered forest reserves in
the Rufiji basin, in which 47.5%% is forest and woodland,
43.6% is bush land and grassland, 6.5% is cultivated, and
the remaining 3% is open land and water bodies as com-
piled from the data of Minstry of Agnculture (MOA)
MOA (1987).

3. Methods and materials
31 Methodology

Kriging is a technique that estimates a variable £ at an
unsampled location, u, from observed values at the neigh-
bouring locations, .. The simplest forms of kriging models
relate Z(u) to Z(u,) by limear repression. The regression
parameters are calibrated to minimize the variance of the
error estimation, Var (Z(u) = Z(u,)), umder the constraimts
that the expected value E[Z(u) — £{u,)] is equal to zero.

Mathematical details of the various techniques are pre-
sented in Deutsch and Journel (1998) and Goovaerts
(1997). Kriging with an external drift, KED, is a variant
of kriging that allows for the use of secondary information
known at every location (exhaustive), which is assumed to
refiect the local spatial trend of the primary varia ble {Deu-
tsch and Joumel, 1998, Goovaerts, 1997), A well-
researched account of the history and orgins of krging
can be found in Cressie { 1990), Cressie (1991) and Kitanidis
(19977,

In general, spatial variation can be decomposed into two
components, large-scale varation. and small-scale varia-
tion. The KED trend represents the large-scale varability
of the primary variable. The residuals from the trend rep-
resent the small-scale variability, and the final KED result
combines both. KED models the trend under the assump-
tions of a linear relationship between pnmary and second-
ary varables and smooth variation in the secondary
variable. The distinctive feature of KED is that the algo-
rithm emplovs a non-stationary random function model,
where stationarity is limited within each search neighbour«
hood, vielding more local detail than with ordinary krging
(Deutsch and Journel, 1998).

The KED estimator from Deutsch and Journel (1998) is
given by the equation
Zren () = 3 AT ()2l (1

=l
where 27, (1) is the KED estimator at location w, A5 (u)
are the KED weights { W) corresponding to the s samples

at location w, and Zw,) are the sample walues within the
search neighbourhood.

Kriging provides optimal estimation, relative to other
interpolation methods, in the sense that it minimizes the
least-square error fora covariance model with the unbiased
condition. The kriging weights { 1), which are represented
by A*EP{.} in Eq. (1), depend on the pasitions of cbserved
and calculated points and the number of observations. The
observed points are stations with recorded rainfall data
while calculated points are stations of geo-referenced pixels
or grids at which interpolated values are assigned. The
interpolated and seo-referenced pixel or grid values of rain-
fall data for each time step is then archived and manipu-
lated in Geographic Information Swstem (GIS). The
kriging cowvariance, C, used in this study employs spherical
model to fit the actual covariance calculated from anmnual
spatial rainfall data. For monthly rainfall data, the Gauss-
ian, spherical amd the exponential models were also
emploved, from which the best model was selected based

on optimization of mode] fit.

2.2, Rainfall daia

The rainfall data is obtained from the Hydrological
Database of the Water Resources Engineering Department
of the University of Dar es Salaam. The spatial distnbution
of the rainfall observation stations in Rufiji basin is
uneven. Im the upper and lower reaches of Rufjij basin
the distribution of stations is sparse. To fill this gap, sta-
tions near or around the basin are also included in the anal-
yaiz (Fig. 1).

Rainfall records for 704 stations located in the bagin
were applied. The record length at these stations is also
uneven and a summary is given in Fig. 2. Average monthly
and annual rainfall records for from varying vears of
record starting for some stations during the 1910s, and
most stations ending during the 19905 and some extending
up to 2000 were available and were used in the study.

It was difficult to find a large number of stations in the
basin with concurrent records due to the fact that CCD is
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Fig 2 Summary details of the rainfall data wed in the dudy
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the recent phenomena of remote sensing data on the one
hand and recorded rainfall data is not updated as long as
CCD records on the other hand. Although it seems inaccu-
rate to use these data of different record lengths, the give a
good indication of existence of the unmderlying relation

between the primary variable under study (rainfall) and
CCD as a secondary variable over the basin.

3.3, Cold cloud duration {1 CCD) dara

Cloud cover imformation is a huge database collectad
every few or fraction of a minute from satellite platforms
by remote sensimg techmiques. This huge information is
analyzed and rainfall-producing cold doud is calibrated,
validated amd distributed freely from different sources.
Cold cond duration (CCD) is duration or a period over
which a rainfall-producing cloud with apparent tempera-
ture lower than predetermined threshold (calibrated) as a
rainfall-producing event is observed in a location. These
temperatures are calibrated and validated from sufficient
pairs of sample data of CCID and rainfall events referring
to similar periods and locations. Rainfall is estimated from
CCD wsimg calibration coefficients (Grimes and Bonifacio,
1999, which are prone to different errors.

The most common period widely used to disseminate
CCD data is on the basis of ten days of accumulated hours
of cold cloud. Ten day composite time senes of CCD data
from 1984 to 1996 were used to resample the long term
monthl v and annual average data at spatial grid resolution
of 7.6 km. The data is obtained from the FAO's ARTE-
MIS (Africa Real Time Environmental Monitoring Infor-
mation System), which is part of the FAO's use of
satellite remote sensing technigues to improve the surveil-
lance and forecasting capabilities of its Global Information
and Early Waming System (GIEWS),

4. Results and discossion
4.1, Varipgram anal vaiz

Existence of any major spatial contimuity in a specific
direction was inwestigated using variogram mapping or
two-dimensional varogram maps, which can show the con-
tinuity or variability of the varable alomg » and y-direc-
tions. This kind of modelling helps in selecting different
distance of influence (range) depending on the continuity
of the variable in different directions. In general, due to
the prevailing physical, topographical, and hydrological
conditions of the area, the vanation of rainfall in a certain
direction might significantly or abruptly change with dis-
tance whilst in other direction it may change smoothly or
gradually, necessitating the application of different ranges
or search radii in different directions.

From the imitial azsezsment of spatial continuity, the
north-easterly direction revealed maximum variogram con-
tinuity for the Rufiyi basin. In the absence of well spread
(spaced) sampled data, and existence of no definitive back-
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ground causes that bring rainfall varability in this north-
easterly direction, we examined other spatial comtinuity
evaluations. After routine exercises of variogram model-
ling and subsequent kriging and sensitivity analysis, we
found out that the effect of considering specific direction
in modelling has little impact on the estimated value and
we opted to adopt a reasonable range (a range less than
that revealed by the maximum directional continuity). This
helped us to settle with a choice of Omni-directional (or
same range in all directions) variogram to be adopted in
our study.

Imstead of visual (manual) fitting a theoretical function
of positive definite model in the considered peostatistical
model studied, an interactive fitting of the nested model
by Indicative Goodness Fit (IGF) criteda (Pannatier,
1996) was used. The IGF is a dimensionless quantity that
can be wsed to judge the performance of a given variogram
whose value, if it approaches zero indicates a good fit.
However, Pannatier (19%6) cautions that this measure is
not an exhaustive measure rather it gives an indication of
how well the experimental and the nested model are fitted.
Table 1 summarizes variogram analysis results of mean
annual as well as average monthly rainfall for Rufiji basin,
which was established using optimal values of 1GF. The
parameters obtained by fitting the best model are also given
inn Table 1. The parameters of these variogram models are
adopted for kriging modelling and analysis of spatial rain-
fall interpolation in the Rufiji basin.

4.2 Kriging aralysis

The algorithm of kriging calls for parameters derived
from the variogram analysis; such as nugget effect, sill,
range [fip,y), major direction of continuity, and the type
of best structure of the variogram. These parameters are
given in Table 1.

Tahle |
Optimized varogram model parameters for average monthly and mean
anmzal raindfall in Rufiji basin

M onth Model parameters 1GF

M adel Mugget sin Range
Janmuary GM 042 0.% 0.71 0.0
Fehruary S5FH 036 0.30 0.54 0.10
March EXP 037 () 0,54 0.0
April SPH 4l 0.4 07l 0.06
May SFH w2l 0.2 62 .08
Jume SPH 33 0.51 [ 0.0
July EXP w35 [ .54 0.0
Aungnst SFH 037 0.47 .40 0.0
September EXP 35 042 .34 a1
Otober EXP 050 0.3 0.50 0.12
Mavember EXPF 056 0.51 1.39 0.0
Dracomber EXP 34 .42 0.3 .05
Azl SFH 42 0.5 0,490 0.0
Key GM - Gassian model; SPH - spherical madel, EX P — expomential
madel.
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Mpplicability of different kinds of kriging techniques is
investigated for Rufiji basin. These include simple kriging
ISK), ordinary kriging (OK), knging with external dnft
[KED) and cokriging (CK). The modelling process was
carried out into two steps; cross validation analysis and
the over all rainfall estimation.

Cross validation of variogram models involves suppress-
img sample values Zw;) (Eq. (1)) one at a time and using
the remaining samples and the theoretical (fitted wario-
gram) model to estimate the missing (suppressed) walue,
calculating the error associated with each estimate, that
is, the difierence between the true (measured) and the esti-
mated value { Eq. (1)) and using the results to determine the
best model parameters ( Table 1). This process is iterative.
Diifferent criteria are wed to determine the validity of war-
igram models. In our case a comparison of the estimated
and observed walues was made on the basis of the Nash
and Sutcliffe (1970) model efficiency crterion given by the
index R This index is usad to identify and select the over-
all robust estimator, to evaluating the degree of perfor-
mance of the estimator and to undertake model
parameter sensitivity analysis in this modelling study.

Az part of selecting the robust estimator, the ranges of
acceptable parameters have been identified from prelimin-
ary variogram modelling exercise. Automatic calibration
has been carried out for each kriging tvpe for positive
values starting from 0.0 and incremented by 0.1. Range
of values considered for each parameter is given as nugget
effect of 0.0-1.0, and sill value of 0.0-1.0.

Using the modelled variogram parameters, the exercise
of zelecting robust estimator and subsequent kriging was
done under varying search radii and different number of
neighbouring samples. The results of the R values
obtained are given in Table 2. Over all ordinary kriging
[OK ) with the corresponding variogram model parameters
indicated in Table 2 have been found to be robust estima-
tor for the Rufiji basin,

This method of automatic selection of the robust estima-
tor and parameters by using £ is the best way for model-
ling of the parameters. It can also help investigate the
sensitivity of the variogram parameters on the model out-
puts and performance of the variogram model.
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Tahle 2
Model performance ¢ ficiency of different kriging types of the variogmm
made] pammeters for Rufiji basin

Estimat or Mugst  Sall Range Search Efficiency
e mdivs (R (%6)
Simpl kriging 043 052 0. s L& 600
Odinary kriging 043 .52 0. Tl L0 614
Kriging with Dt 043 032 0.7 L& 2.3

4 3. Parameter sensitivity analysiz

In order to investigate the effect of the change of param-
eters on the estimated values, we have undertaken params
eter sensitivity amalvsis on each of the parameters. The
sensitivity evaluation was camied out on the basis of the
sensitivity measured as a function of changes in the value
of the model efficiency, &

Firstly, effect of each variogram parameters were inves-
tigated wsing automatic calibration method and secondly,
by using the best variogram parameters, the effect of the
number of the neighbouring stations and the search radius
on the kriging results is investigated. It can be clearly seen
from Fig. 3 that under circumstances of’ amept.:ible ranges,
(where the mugget effect is less tham 0.5), the R values are
less sensitive to all parameter combinations.

The effect on the model efficiency R* and the perfor-
mance of the variogram model for different search radn
and size of meighbouring data is shown in Table 3. The
parameters of the spherical wariogram model are for Nug-
pet, Sill and Range values are 042, .50 and 0.9, respec-
tively. From Table 3 it can be seen that the number of
the neighbouring points has more pronounced impact on
the model efficiency than the search radius.

In both cases, the relative chanpes of the & walues are
low and do not have any significant impact on the value
of the estimated parameters of the variogram model. How-
gver, it was noticed that when the search radius is much
lower than the necessary radius (in this case one degree),
most of the grids remain un-estimated where as larger
search radius smoothes the estimated mean annual surface.
In the case of the neighbouring data sets. when the number
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Fig 3. Sersitivity of wvariogram model parametes,
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Tahle 3
The parameter of the fitted variogram mode] for different search radiu
considerad

Simulation Mumber of " Search radius B

CAES neighbouring stations (%) (degree) {%al
Casze | 1-5 585 05 6l.4
Case 2 1-1 Ghg 1.0 6l.4
Case 3 1-20 G6l4 20 613

of data considered in estimating a point is more, the esti-
mate will be smoothened out but when the data considered
is less, one might miss the details of the features and the
estimate might be undesirable. Caution should be taken
in selecting the radius of search and the number of neigh-
bouring data.

The insensitivity of R for different combination of the
parameters was insightful to the investigation of other tech-
niques or making an attempt of including other related
physical or hvdrological phenomena that attribute to rain-
fall variation and its spatial modelling.

4.4, Model reliahility and residual error analysis

In order to investigate the performance of the geostatis-
tical model for rainfall interpolation, the randomness of
residuals were studied using two types of residual analysis.
These are frequency histograms of the errors and error dis-
tribution plot against the estimated rainfall.

The frequency histograms of the error is shown in Fig. 4,
which shows the relative frequency of error values for the
Rufiji basin. Supenimposed on the histogram of Fig. 4 is
the plot of an ideally expected nomal probability density
function {pdf) curve. These plots are fairly normal with lit-
tle tendency of positive skewness, showing the number of
overestimation is slightly higher than the under estimation.

Fraquency Plot of Residual Errors
B Ralative Frequancy’
——Haormal pdi

A

0.5

Relative Frequency

-800 400 -B00 0 200 400
Residual Error

600 a0

Fig. 4. Freguency histogram of residual ermors fitted with a cure of an
ideally expected Mormal probahility density function (pdfy cumve.

— Lower 35%CL

— Upper 95%:CL
—Mean

Error (mm})
g o

Observed MAR

Fig. 5. {bserved mean anmual rainfall (MAR} vesus maode] ermors.

The distribution of the error {observed minus simulated
values) was plotted against observed mean annual rainfall
(Fig. 5). Even though, the distribution of the errors has
fallen well within the lower and upper bounds limits of
the 93% confidence limits, the plot shows a seemingly sys-
tematic relation between the observed and error quantity,
whereby lower values are in gemeral underestimated and
higher values are overestimated (Fig. 5).

In the least square sense of model efficiency and based
on this investigation {parameter sensitivity and residual
analysis) further improvement can only be achieved if extra
secondary variable which is known to have relation with
the rainfall quantity might be included in the analysis such
as CCD, altitude, etc. Thus, an attempt to improve the
results of the estimate was made by including the cold
cloud duration (CCD) in the analysis, as presented in the
section that follows.

4.5 Use of CCIY in kriging extrapolation

The rainfall data is under sampled as seen from the dis-
tribution of the rain gauge sites in the drainage basin. The
distribution is so irregular and sparsely and non-uniformly
distributed (Fig. 1). The high correlation of areal rainfall
distribution with CCD is also well established phenomenon
signifying the background cross-correlation between rain-
fall and CCD. Hence we have explored the potential use
of cokriging system in rainfall interpolation in this tropical
hasin.

Kriging with extemal drift using CCD was investigated
to improve the results of the estimate, the result obtained
was not better than the result obtained by the ordinary kri-
ging. However, improvements of the results were observed
when the CCD was used as a background image. The tech-
nigue involved creating of the ratio map of observed rain-
fall to the corresponding CCD image by using the ordinary
kriging, this image is finally converted into the estimated
rainfall by multiplying with the CCD image. To the annual
rainfall data, a spherical model was fitted to semi-vario-
grams with a range of 0. 78% and 38% of nugget effect to sill
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Table 4
Maode] efficiency of the CCD-based improved ordinary knging maodel

Rearch Mo, of B (% using drift variablz

Ordinary kriging

paramet es mdius {7}  data ocD MAR/CCD ratio
MNugget (.24 1.0 120 59.3 4.5

Eill 63

Range 78

ratio. The results of the performance index { ) is given in
Table 4. From Table 4, it can be noted that there is slight
improvemeant when the ratio of MAR to CCD is used as
secondary variable or external drift in interpolation of
annual rainfall.

Comparison between observed and model simulated
annual rainfall in the Rufiji basin using the adopted geosta-
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Fig. & Comparson between observed and model simulated anmoal
rainfall { MAR}) in the Rufiji basin.
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Fig. 7. Derived mean amnual rainfall of the Rufiji hasin wing ordinary
kriging wing OCDr as external drift.

tistical model of ordinary Kriging with MAR/CCD ratio as
secondary variable is shown in Fig. 6. The interpolated
ratio surface after being converted into the actual estimated
was compared with the observed mean annual rainfall val-
ues for the Rufiji basin. The improved mean annual rainfall
surface image with resolution of 10 km = 10 km is given in
Fig. 7.

5. Summary and conclusions

In this analysis various deterministic geostatistical tech-
niques are investigated and implemented; simple kriging
[SK), ordinary kriging (OK), krging with trend model or
external drift (KED) and cokriging (CK). The parameters
obtained from the spatial continuity modelling are the
basis for associating the weights to each neighbouring sta-
tions in estimating the unsampled value Z{u). Investigation
of various kriging algorithms reveals that, in general the
ordinary kriging technique is a robust estimator on the
basis of Nash and Sutcliffe efficiency criteria (&%), Gener-
ally, OK produced reasonably better estimation result with
R value of 61.4% for Rufiji mean annual rainfalls.

After exhaustive modelling analysis, parameter sensitiv-
ity analysis and examination of the residual error is carried
out for any indication of existence of systematic error in the
estimates and to look for possible inadequacies of the
assumed model structure. The parameter values, as long
as they are in acceptable ranges, have been found more
resistant (less sensitive) in the sense of the efficiency crite-
rion (/%) for any diffzrent combination of parameters.

The use of CCD image as a back ground image in esti-
mating the rainfall quantity has proved to be very essential
as the performance index (R°) has shown improvement
over the estimation based on observed rainfall alone. An
attempt to improve the results of the estimation by incor-
porating related secondary variables such as cold cloud
duration (CCDY) shows little or no improvement at all for
SK, OK, and CK krging types. An encouraging improve-
ment is obtained by including the secondary variable as a
ratio to the primary varable as well as further use of the
estimated surface from the MAR/CCD ratio as a dnft data
and kriging with extemal drift. Notable improvement in
the model efficiency (R*) was obtained by using ordinary
kriging (OK) with extemal drift wing the ratio of MAR/
CCI as external drift. The R was improved from 61.4%
to 64, 5%,

Over all, the spatial rainfall variation in the Rufuji basin
does not depend entirely, on the parameters controlling the
shape of the model variogram such as nugget effect, sill or
range, etc. and it is sensitive to the type of kriging method
used. In our opinion, the most important factor in the
modelling of the spatial behaviour is the profound under-
standing of the nature of the rainfall distribution in the
area, and identification of the related variables that affect
rainfall occurrence and its magnitude.

The spatial behaviour of rainfall becomes notoriously
variable as the time step becomes smaller. One can estimate
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the mean amnual rainfall of am area more accurately than
estimating the daily rainfall amount where as the informa-
#tmaem Fhnt cne b cmte i tad s Aol et T L s e e
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tant than the larger time steps from planning as well as
operational point of view. Thus it is the recommendation
of this study to further investigate the spatial variability
or fluctuation of rainfall on a lesser time step such as of
dailly, weekly or decadal time scales by incorporating the

pro babilistic geostatistical methods as well as real time
ground-based (observed) rainfall and CCD data.
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