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Abstract. Let G be a compact metrizable abelian group, and let X be a Banach
space. We characterize convolution operators associated with a regular Borel X-valued
measure of bounded semivariation that are compact (resp; weakly compact) from
L1(G), the space of integrable functions on G into L1(G)⊗̌X , the injective tensor
product of L1(G) and X . Along the way we prove a Fourier Convergence theorem
for vector measures of relatively compact range that are absolutely continuous with
respect to the Haar measure.
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1. Notation and preliminaries. Throughout this note we let G be a compact
metrizable abelian group, Ĝ be its dual group, � be the σ -field of Borel subsets of
G, and we let m denote a normalized Haar measure on G. If X is a Banach space,
we shall denote by C(G, X) the Banach space of all continuous X-valued functions ϕ

defined on G equipped with the supremum norm, ‖ϕ‖∞ = supt∈G ‖ϕ(t)‖. We denote
by M(G, X) the Banach space of all regular Borel X-valued measures λ defined on
� that are of bounded variation equipped with the variation norm, ‖λ‖ = |λ|(G) =
sup�

∑
A∈� ‖λ(A)‖, where the supremum is taken over all finite partitions � of G

into elements of �. More generally, we let Mb(G, X) the Banach of all regular
Borel X-valued measures λ defined on � equipped with the semivariation norm,
||| λ ||| = ‖λ‖(G) = sup‖x∗‖≤1 |x∗λ|(G). We also denote by Lp(G, X), 1 ≤ p < ∞, the
Banach space of (all equivalence classes of) m-Bochner p-integrable function f on G
with values in X , under the norm ‖f ‖p = (

∫
G ‖f (t)‖pdm(t))

1
p . If X = � or �, we shall

simply write C(G) (resp., M(G)) for C(G, X) (resp., M(G, X)), and Lp(G) for Lp(G, X).

If μ ∈ Mb(G, X), the Fourier Transform of μ, denoted by μ̂, is the X-valued function
defined on Ĝ as follows:

μ̂(γ ) =
∫

G
γ (t) dμ(t), for each γ ∈ Ĝ.

A measure μ ∈ Mb(G, X) is said to have a relatively compact range if μ (�) =
{μ(A) : A ∈ �} is relatively compact in X .
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If μ ∈ Mb(G, X), and f is a Borel function on G, then the convolution of f and μ,
denoted as f ∗ μ, is the X-valued function defined on G by

f ∗ μ(s) =
∫

G
f (s − t)dμ(t) (*)

for each s in G, provided that the integral exists.

The next proposition shows that the integral in (*) is well defined for elements in
C(G), and that the notion of convolution can be extended to elements in L1(G). In
what follows, L1(G)⊗̌X will stand for the injective tensor product of L1(G) and the
Banach space X . We recall that L1(G)⊗̌X is the completion of L1(G) ⊗ X under the
injective tensor norm ‖ . ‖∨ defined as follows: if u = ∑n

i=1 fi ⊗ xi ∈ L1(G) ⊗ X

‖u‖∨ = sup

{∣∣∣∣∣
n∑

i=1

y∗(fi)x∗(xi)

∣∣∣∣∣ : ‖y∗‖ ≤ 1, ‖x∗‖ ≤ 1, y∗ ∈ (L1(G))∗, x∗ ∈ X∗
}

= sup

{∥∥∥∥∥
n∑

i=1

x∗(xi)fi

∥∥∥∥∥
1

: ‖x∗‖ ≤ 1, x∗ ∈ X∗
}

.

= sup{‖x∗u‖1 : ‖x∗‖ ≤ 1, x∗ ∈ X∗}.

PROPOSITION 1.1. Let X be a Banach space, G be a compact metrizable abelian
group, and let μ ∈ Mb(G, X).

If f ∈ C(G), then f ∗ μ ∈ C(G, X) with

‖f ∗ μ‖∞ ≤ ‖f ‖∞‖μ‖(G). (**)

Moreover,

‖f ∗ μ‖∨ ≤ ‖f ‖1‖μ‖(G). (***)

Proof. Let d denote the metric defining the topology of G. Let f ∈ C(G), since f is
uniformly continuous on G, for each ε > 0, there exists δ > 0, such that

d(u1, u2) < δ =⇒ |f (u2) − f (u1)| < ε.

If d(s1, s2) < δ, then

‖f ∗ μ(s2) − f ∗ μ(s1)‖ = sup
‖x∗‖≤1

|
∫

G
f (s2 − t) − f (s1 − t)dx∗μ(t)|

≤ sup
‖x∗‖≤1

∫
G

|f (s2 − t) − f (s1 − t)|d|x∗μ|(t) ≤ ε ‖μ‖(G).

This shows that f ∗ μ is uniformly continuous on G, and (**) follows easily.

To prove (***), let f ∈ C(G), then for each x∗ ∈ X∗, it is easy to check that for
each s ∈ G,

x∗ (f ∗ μ(s)) = x∗
(∫

G
f (s − t)dμ(t)

)
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=
∫

G
f (s − t) dx∗μ(t) = f ∗ x∗μ(s).

Thus for each f ∈ C(G) and x∗ ∈ X∗, we have

x∗ (f ∗ μ) = f ∗ x∗μ,

where f ∗ x∗μ is the convolution of f and the scalar measure x∗μ. In particular, since
f ∗ x∗μ ∈ L1(G), it follows from convolutions with regular Borel scalar measures (see
[2] or [5]) that the norm in L1(G) of f ∗ x∗μ satisfies

‖f ∗ x∗μ‖1 ≤ ‖f ‖1|x∗μ|(G),

hence,

‖f ∗ μ‖∨ = sup
‖x∗‖≤1

‖f ∗ x∗μ‖1 ≤ ‖f ‖1||μ||(G).

�
It follows from (**) that each element μ in Mb(G, X) induces a bounded linear

operator

Tμ : C(G) → C(G, X),

where

Tμf = f ∗ μ for each f ∈ C(G)

Since C(G) is dense in L1(G), it follows from (***) that the notion of convolution
with a vector measure μ can be extended to elements in L1(G), and that Tμ extends to
a bounded linear operator

Tμ : L1(G) → L1(G)⊗̌X,

where for each f ∈ L1(G), Tμ(f ) will also be denoted by f ∗ μ.

The operator Tμ is called a convolution operator associated to the regular Borel
vector measure μ. Such an operator was studied in [4], under the additional assumption
that the measure μ is of bounded variation, in which case Tμ is actually a bounded
linear operator from L1(G) into L1(G, X).

The work in [4] was motivated by the following result, where compact and weakly
compact convolution operators on C(G) and L1(G) were completely characterized
when the underlying measure is a regular Borel scalar measure.

THEOREM 1.2. Let G be a compact metrizable abelian group with Haar measure m,
and let ν ∈ M(G). The following assertions about convolution operators are equivalent:

1. Tν : L1(G) �→ L1(G) is compact.
2. Tν : L1(G) �→ L1(G) is weakly compact.
3. Tν : C(G) �→ C(G) is compact.
4. Tν : C(G) �→ C(G) is weakly compact.
5. the measure ν is absolutely continuous with respect to

Haar measure m.
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When the regular Borel X-valued vector measure μ is assumed to be of bounded
variation, the results of [4] can be summarized in the following theorems.

THEOREM 1.3. Let G be a compact metrizable abelian group with Haar measure m,
let X be a Banach space and let μ ∈ M(G, X). The following assertions about convolution
operators are equivalent:

(i) Tμ : L1(G) �→ L1(G, X) is compact.
(ii) Tμ : L1(G) �→ L1(G, X) is weakly compact.

(iii) The measure μ = φ.m, where φ ∈ L1(G, X).

THEOREM 1.4. Let G be a compact metrizable abelian group with Haar measure m,
let X be a Banach space and let μ ∈ M(G, X). Then

(i) Tμ : C(G) �→ C(G, X) is weakly compact if and only if the measure μ is absolutely
continuous with respect to Haar measure.

(ii) Tμ : C(G) �→ C(G, X) is compact if and only if the measure μ is absolutely
continuous with respect to Haar measure, and has relatively compact range.

As one can see, when the measure μ ∈ M(G, X), the assertion ‘Tμ : L1(G) �→
L1(G, X) is compact’ implies ‘Tμ : C(G) �→ C(G, X) is compact’, but the reverse
implication is no longer true. One object of this note is to show that when μ ∈ Mb(G, X),
then Tμ : L1(G) �→ L1(G)⊗̌X is compact if and only if Tμ : C(G) �→ C(G, X) is
compact.

A key ingredient that is very useful in dealing with convolution operators is
the notion of an approximate unit also referred to as a summability kernel. Recall
that a trigonometric polynomial p is a continuous function on the group G of the
form p = ∑n

i=1 αiγi, where for each 1 ≤ i ≤ n, αi is a scalar, and γi ∈ Ĝ. When the
compact group G is metrizable it is possible to find a sequence of trigonometric
polynomials whose main properties are outlined in the following proposition (see
[2]).

PROPOSITION 1.5. Let G be a compact metrizable abelian group. There exists a
sequence (kn) of trigonometric polynomials such that:

1. kn ≥ 0 for each n ∈ �.
2. ‖kn‖1 = 1.
3. limn

∫
Vc kn(t)dm(t) = 0, for each neighbourhood V of zero in G.

In the sequel we will refer to the sequence (kn) as a an approximate unit or a
summability kernel associated with the group G.

Another important property (see [2]) of an approximate unit that will be useful in the
sequel is the following:

PROPOSITION 1.6. Let G be a compact metrizable abelian group, φ a continuous
function on G and (kn) an approximate unit. Then

lim
n→∞

∫
G

kn(t)φ(t)dm(t) = φ(0),

where 0 denotes the identity element of the group G.

Finally, all notions not defined can be found in [1, 2, 3, 5] or [6].
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2. The main theorem. A very important and widely used result in classical Fourier
analysis is the Fourier Convergence Theorem in which approximate units are used to
approximate elements of C(G) and L1(G). A straight forward modification of the proof
in the scalar case (see [2]) enables us to generalize these facts to vector-valued functions.
Namely, it can be shown that if f ∈ L1(G, X) (resp. C(G, X)) and (kn) is an approximate
unit, then

‖kn ∗ f − f ‖1 −→ 0 as n −→ ∞,

(resp. ‖kn ∗ f − f ‖∞ −→ 0 as n −→ ∞).

One result that we shall show in this paper is an extension of the Fourier Convergence
Theorem to vector measures of bounded semivariation, that are absolutely continuous
with respect to Haar measure and that have a compact range. In what follows we shall
denote by K(G, X) the subspace of Mb(G, X) of such measures. It is a well-known fact
(see [1]) that K(G, X) is a Banach space when endowed with the semivariation norm
and that it is isometrically isomorphic to L1(G)⊗̌X .

THEOREM 2.1. Let G be a compact metrizable abelian group with Haar measure m,
and let X be a Banach space. The following assertions about a regular Borel X-valued
measure of bounded semivariation μ are equivalent:

(i) μ ∈ K(G, X).
(ii) For any approximate unit (kn), ||| kn ∗ μ − μ ||| −→ 0 as n −→ ∞.

Proof. To prove (i) ⇒ (ii) assume that μ � m and that the measure μ has a relatively
compact range. Let S : C(G) �→ X be the operator

S(f ) =
∫

G
f dμ for each f ∈ C(G).

Since μ has relatively compact range, it follows (see [1]) that the operator S is
compact. Moreover, it is easy to check that for each x∗ ∈ X∗,

S∗(x∗) = x∗μ.

This shows that when μ � m and μ has relatively compact range the set {x∗μ :
‖x∗‖ ≤ 1} is a compact subset of L1(G). In particular, this implies that

‖kn ∗ x∗μ − x∗μ‖1 −→ 0 uniformly in ‖x∗‖ ≤ 1.

This of course is equivalent to

||| kn ∗ μ − μ ||| −→ 0.

The implication (ii)⇒ (i) follows from the fact that for each n ∈ �,

kn ∗ μ ∈ L1(G)⊗̌X,

and the fact that K(G, X) is isometrically isomorphic to L1(G)⊗̌X . �

We are now ready to state the main result of this paper.
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THEOREM 2.2. Let G be a compact metrizable abelian group with Haar measure m.
Let X be a Banach space and let μ be an X-valued measure of bounded semivariation.
The following assertions about the convolution operator Tμ are equivalent:

(a) Tμ : L1(G) �→ L1(G)⊗̌X is compact.
(b) Tμ : L1(G) �→ L1(G)⊗̌X is weakly compact.
(c) μ is absolutely continuous with respect to m and the measure μ has a relatively

compact range.
(d) Tμ : C(G) �→ C(G, X) is compact.

Proof. (a) ⇒ (b) is obvious. To prove (b) ⇒ (c) note that if Tμ : L1(G) �→ L1(G)⊗̌X
is weakly compact, then if (kn) is an approximate unit the set

{kn ∗ μ, n ∈ �}
is weakly compact in L1(G)⊗̌X . Thus, there exit a subsequence

(
knj

)
of (kn) and an

element ν ∈ L1(G)⊗̌X , such that

knj ∗ μ −→ ν weakly in L1(G)⊗̌X.

In particular, for each γ ∈ Ĝ,

̂knj ∗ μ(γ ) −→ ν̂(γ ) weakly in X.

But it is easy to check that for each γ ∈ Ĝ,

̂knj ∗ μ(γ ) = k̂nj (γ )μ̂(γ ),

and by Proposition 1.6

k̂n(γ ) −→ 1,

it follows that for each x∗ ∈ X∗,

x∗(μ̂(γ )) = x∗(ν̂(γ )).

By the Uniqueness theorem (see [5]) we have that for x∗ ∈ X∗, the scalar
measures

x∗μ = x∗ν

and hence by the Hahn–Banach Theorem, μ = ν and the measure μ has a relatively
compact range.

Moreover, when Tμ : L1(G) �→ L1(G)⊗̌X is weakly compact, then for each x∗ ∈
X∗, the bounded linear operator from L1(G) into L1(G), which to each f ∈ L1(G),
associates the element x∗(f ∗ μ) is also weakly compact. But it is easy to check that for
each f ∈ L1(G), and x∗ ∈ X∗

x∗(f ∗ μ) = f ∗ x∗μ.

Thus, the convolution operator Tx∗μ : L1(G) �→ L1(G) is also weakly compact, and
therefore x∗μ � m for each x∗ ∈ X∗ by Theorem 1.2. It follows that μ(A) = 0 whenever
A is a Borel subset of G and m(A) = 0. Since the measures μ and m are countably
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additive on the σ -field � of Borel subsets of G, it follows from a result of B. J. Pettis
(see [1]) that μ � m.
To prove (c) ⇒ (a) assume that μ � m and that the measure μ has a relatively compact
range. By Theorem 2.1

||| kn ∗ μ − μ ||| −→ 0.

To finish the proof note that by Proposition 1.1

‖Tμ − Tkn∗μ‖ ≤ ||| kn ∗ μ − μ |||.
Moreover, for each n ∈ �, we have

Tkn∗μ = Tkn ◦ Tμ.

By Theorem 1.2 the operator Tkn is compact for each n ∈ �, and consequently
each operator Tkn∗μ is compact. This of course implies that Tμ is compact.

The proof of (d) ⇒ (c) follows from the fact that when Tμ : C(G) �→ C(G, X) is
compact, then for each x∗ ∈ X∗, the convolution operator Tx∗μ : C(G) �→ C(G) is also
compact, and therefore x∗μ � m for each x∗ ∈ X∗ by Theorem 1.2. This of course
shows that μ � m.
Moreover, one can proceed as in [4] to show that for each Borel subset A of G,

T∗∗
μ (1A) = 1A ∗ μ.

Because Tμ is compact, its second adjoint T∗∗
μ is compact, and it takes its values

in C(G, X). Therefore, the set {1A ∗ μ : A ∈ �} is relatively compact in C(G, X), and
therefore the set μ(�) = {1−A ∗ μ(0) : A ∈ �} is relatively compact in X .
To prove (c) ⇒ (d) assume that μ � m, that the measure μ has a relatively compact
range, and consider the set F = {f ∗ μ : f ∈ C(G), ‖f ‖∞ ≤ 1}. Since μ has relatively
compact range, then for each s ∈ G, if we denote by μs = σs(μ), the measure image
of μ by the translation σs : G �→ G such that σs(t) = s − t, then μs = σs(μ) has also a
relatively compact range. Thus for each s ∈ G, the set

F(s) = {f ∗ μ(s) : f ∈ C(G), ‖f ‖∞ ≤ 1}
=

{∫
G

f (s − t)d(μ)(t) : f ∈ C(G), ‖f ‖∞ ≤ 1
}

=
{∫

G
f (t)dσs(μ)(t) : f ∈ C(G), ‖f ‖∞ ≤ 1

}
is relatively compact in X .

To finish the proof we will be done if we could show that the setF is equicontinuous.
To this end note that for s, s′ ∈ G and ‖f ‖∞ ≤ 1 in C(G),

‖f ∗ μ(s) − f ∗ μ(s′)‖ =
∥∥∥∥∫

G
f (s − t) − f (s′ − t)dμ(t)

∥∥∥∥
= sup

‖x∗‖≤1

∣∣∣∣∫
G

f (s − t) − f (s′ − t)dx∗μ(t)
∣∣∣∣

= sup
‖x∗‖≤1

∣∣∣∣∫
G

f (t) dx∗(μs − μs′ )(t)
∣∣∣∣
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≤ sup
‖x∗‖≤1

∫
G

|f (t)| d|(x∗μs − x∗μs′ )|(t)

≤ ‖μs − μs′ ‖(G).

Since the set {x∗μ : ‖x∗‖ ≤ 1} is compact in L1(G), and since for each g ∈ L1(G) the
map s �→ gs is continuous from G to L1(G) (see [5]), it follows that the map s �→
x∗μs is uniformly equicontinuous in x∗ ∈ X∗, ‖x∗‖ ≤ 1. This implies that the map
s �→ μs is uniformly continuous from G into Mb(G, X), and shows that the set F
is equicontinuous and thus by Ascoli’s Theorem the set F is relatively compact in
C(G, X). �
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