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A 1.2-hydride shift in the phosphoric acid-promoted cyclodimerization of styrene cxide and its chloro
derivatives under solvent-free conditions leading to 2 4-disubstituted 1.3-dicxolanes is described
Methoogy substituents on the ammatic ring of the styrene oxide prevent the 1.2-hydride shift reaction
leading to substituted 1.4-dioxanes. A possible mechanism for the formation of the 1.3-dicxolanes is
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The chemistry of epoxides has atracted significant attention
mainly as a result of their highly regio- and stereoselective ring-
opening reactions and their potential as building blocks for the
synthesis of a wide range of biologically active oxygen-containing
compounds. Thelr synthetic utility is based on the fact that they
undergo ring-opening with a broad range of nucleophiles.'™

To the best of our knowledge, the preparation of 1,3-dioxolanes
utilizing acid-promoted cyclodimerization of epoxides has not been
reported. In connection with a projed exploiting the use of styrene
oxides in synthesis, we report herein our preliminary results on the
serendipitous synthesis of 2 4-disubstituted 1,3-dioxolanes via cyc-
lodimerization of styrene oxides under solvent-free conditions. This
cydodimerization reaction was discovered whilst we were investi-
gating the use of phenols in acid-mediated epoxide ring-opening
reactions. 1,3-Dicxol anes are often prepared by reactions of oxiranes
with carbonyl compounds in the presence of Bransted or Lewis adds
including BF;, CuSOs Bi(IN), So{IV), TV, Ir, Ru(lll) and Re cata-
lysts. "™ 12 The alternative route described herein involves a 1,2-hy-
dride shift during the cyclodimerization of sty rene oxides,

Styrene oxide 2 was readily prepared from styrene 1 in 88%
yield using mCPBA (Scheme 1) and initial experiments were per-
formed using 2 as a model substrate. Thus, stirring a solution of
epoaxide 2 in HzPOy at room temperature gave a 75:25 mixture of
trans-3 and ci-3in good vield. Various organic and i norganic acids
were tested, but only perchloric acid was found to be equally effec-
tivein promoting the cyclodimerization reaction. The major isomer
trans-3 was purified by clumnchromatography and characterized
by NME spectroscopy.’® The relative stereochemistry of rons-3
was assigned using 2D NME experiments, particularly NOESY in
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which there was correlation abserved between H-4 and the meth-
ylene protons of the beney] substituent.

We wondered whether various groups situated at different
positions on the phenyl ring of a styrene oxide would have any ef-
fect on the cydodimerization. To this end, orthe-, meta- and pare-
chlorostyrene oxides 4, 6 and 8 were prepared using the method
described above and then subjected to the solvent-free cyclodi-
merization conditions to give a mixture of trans/cis isomers of
the corresponding dimers 5, 7 and 9," respectively, in high yields
and stereoselectivity for the trans isomer (Scheme 2 ). I nterestingly,
and perhaps somewhat surprisingly, p-chlorostyrene oxide gave
exclusively the trans-isomer while its ortho- and mete-analogues
gave a 75:25 mixture of trans and as isomers. The reason for this
discrepancy is not clear. On the basis of these findings, it appears
that the position of the chloro group on the aromatic ring does
not have any effect on the cyclodimerizatdon of styrene oxides to
13-dioxalanes. Chlorine is an electron-withdrawing substituent
and hence it is assumed that other electron-withdrawing groups
wiould favour the formation of 1,3-dioxolanes,

A possible mechanism for this cyclodimerization reaction
would involve protonation and ring-opening of epoxide 2 © give
the benzyl cation 100 Cation 10 is attacked by another molecule
of epoxide 2 to give the dimeric benzyl cation 11 which can cyclize
to form 1 d-dioxane 12, In arder to form the 1 3-dioxalane, a 1.2-
hydride shift occurs to give the cation 13 which is stabilized by res-
onance structure 13a. Cyclization of 13 then occurs to give 2-ben-
zyl-a-phenyl-2 3-dioxolane 14 (Scheme 3] The observation that
the 1.2-hydride shift in 11 to give 13 was faster than the cycliza-
tion reaction to give dioxane 12 was a striking aspect of this work.
It can be assumed that stabilization of the carbocation by the oxy-
gen in resonance strudures 13 is more pronounced than that by
the phenyl group in structure 11, The electron-withdrawing chlo-
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rine atom on the phenyl ring further destabilizes the benzyl carbo-
cation of 11 and therefore accelerates the 1.2-hydride shift.

Mext, we decided o investigate the effects of methoxy groups
(eledron-donating } on the aromatc ring on the cydodimerization.
To this end, methoxystyrenes 15 and 17 were subjected to the
epoxidation conditions and interestingly, and perhaps somewhat
surprisingly, 14-dioxanes 16 and 18" were isolated in good yields
instead of the expected epoxides (Scheme 4). Concellon et al. have
reported the cyclodimerization of epoxides to 1 4-dioganes pro-
maoted by Lewis acids."# 1t is therefore logical o suggest that this
cyclodimerization reaction is promoted by the m-chlorobenzoic
acld generated during the epoxidaton reaction. We suggest that
the methoxy group further stabilizes benzyl cation 11 by resonance
thereby preventing the occurrence of 1,2-hydride shift. 1t is reason-
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able to expect that other electron-donating groups on the aromatic
ring of styrene oxide would also prevent the 1,2-hydride shift.

In summary we have reported a 1.2-hydride shift in the cyclod-
imerization of styrene oxides which proceeds under fairly mild
conditions o give 1,3-diokolanes, We have also shown that chloro
groups on the phenyl ring of styrene favour the 1.2-hydride shift
leading to substituted 1,3-dioxolanes while methoxy groups pre-
vent the hydride shift resulting in the formation of substituted
14-dioxanes instead. Further studies on the effeds of other sub-
stituents on the aromatic ring of styrene oxide on the cyclodimer-
ization reaction are currently under investigationin our laboratory.
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