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ABSTRACT 

This paper presents an implementation of active-learning-based teaching model for teaching a 

topic on programming techniques in an undergraduate computer science education course 

which prepares students to teach the Botswana General Certificate of Science Education 

(BGCSE) computer studies subject. This programming topic is very crucial for developing 

lifelong skills in problem-solving and critical thinking skills; skills that are of crucial 

importance in the career of computing graduates. The topic has always been very difficult to 

master for pre-service computer studies students who have very little programming experience. 

We suggest this active learning approach for the reason that the students actively participate 

during the discussion, and the course tutor can easily identify the alternative conceptions that 

the students have, and be able to provide the necessary help to the future computer studies 

teachers. Active learning is a constructivist teaching approach that actively engages students 
in the learning process. The students learn problem-solving by doing, through a step-by-step 

process, and always build on what they already know previously. It uses different 

methodological interaction techniques, thereby improving student understanding of the 

programming concepts and the general motivation to learn more. We also discuss the role of 

the teacher in active learning approach. 

Keywords: Active learning, programming techniques, problem-solving, constructivist learning 

theory, computer science education 

INTRODUCTION 

Among the aims of the BGCSE senior secondary school computer studies syllabus are for the students 

to be able: 

1. To develop lifelong learning skills to be able to apply their ICT knowledge to solve real life 

problems.  

2. To develop critical and logical thinking, self-reliance and initiative, which will serve as the 

basis for further training and positive work habits in the use of computers (BGCSE 

Computer Studies Syllabus. 

These broad aims can be acquired through topics in the systems development life cycle and 

programming techniques. To increase the confidence in their future teaching of these topics at senior 

school, the student teachers have to be thoroughly prepared. They need to have hands-on experience 

especially with common programming constructs. Real-life problem solving using programming 
language is not an easy task, especially for novices to programming (Robins et al., 2003). They need 

to thoroughly understand the syntax and semantics of a language to fully understand, and then convert 

that, using their own acquired mental models to fully convert their own understanding into computer 

code. The students should be involved in creating their computer-based problems, and providing 

possible solutions to them. This way, they are unlikely to benefit much from the study of the 

programming topics. The tutor would just guide the selection and help in designing and coming up 
with solutions. Most of the work should be done by the student. 

Student teachers should be able to cover the design, development, implementation, maintenance and 

review principles, which include techniques and tools relating to the solution to a computer-based 

problem. The general objectives include: 
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a. Designing algorithms which relate clearly to the requirements of the system 

b. Explain algorithms and how they relate to the system 

c. Explain how hardware needs arise from the output required from the system 

d. Use algorithmic tools like top-down design, structure diagrams, flowcharts,, libraries and 

procedures. 

e. Interpreting and testing algorithms using dry runs and trace tables 

f. Using pseudo code structures for selection structures, loops, input and output, counting and 

sequences. 

Reinforcement of these studies is through practical work. These programming techniques have to be 

learnt through the use of many practical examples in everyday life. Although the emphasis is on 

structured programming techniques using pseudo code and flowcharts, the consolidation can only be 

through practical problem solution, and this practical solution will need the use of a programming 

language like Java or Visual Basic.NET that supports use of visual programming tools, both of which 

are widely available. These programming languages will provide necessary basic programming 
experience that is necessary for the teaching of senior school students, and will give the senior school 

students an edge if they start computing disciplines in programming courses at university. 

CONCEPTUAL FRAMEWORK 

Active Learning 

Active learning is a process whereby students engage in activities, such as reading, writing, discussion, 

or problem solving that promote analysis, synthesis and evaluation of class content. It is a planned 

series of actions or events to invite the participant to process, apply, interact and share experiences as 

part of the educational process (McConnel, 1996). The interactive components support the goal and 

educational objectives for the learning activity. Active learning promotes reflection, problem solving, 

and critical thinking, manipulation of materials, analysis, synthesis and evaluation of the information 

(McConnel, 1996; Gao & Hargis, 2010; Hazzan, 2011). 

Among the many descriptions of active learning, Silberman (1996) asserts that students figure things 

out by themselves, come up with examples, try out skills, and do assignments that depend on the 

knowledge they already have or must acquire. According to constructivists, learning is an active 

acquisition of ideas and knowledge construction, rather than a passive process. In other words, 

learning requires the individual to be active and to be engaged in the construction of one’s own mental 

models.  

Active learning is widely accepted nowadays as a quality form of education (Silberman, 1996; Robins, 

et al., 2003; Prince, 2004; Gao & Hargis, 2010; Hazzan, 2011; Lewis, 2011). Studies have shown that 

students prefer strategies promoting active learning to traditional lectures. Researchers agree that 

learning involves constructing our own meanings. They suggest the design of well-structured, cohesive 

material, and then encourage learners to actively engage with the material. Active learning is involving 

students directly and actively in the learning process itself. This means that instead of simply receiving 

information verbally and visually, students are receiving, participating and doing something, i.e. 

talking, listening to one another, writing and reading programs, and reflecting individually or in small 

groups. 

Deep Learning 

Our students are still novices to programming. They have just done a semester long introductory java 

course in programming. Literature on the learning of object-oriented programming languages and 

computer science education (Ben Ari, 2001; Gao & Hargis, 2010; Kinnunen & Simon, 2012; Lewis, 

2011; Robins et al., 2003, Thomson & Kinshuk, 2011) shows that it is not an easy task. It is one of 

those courses at university where average students struggle to pass. The course that they have done 

mainly focuses on object-oriented java language features. There is not much time for real-life 

application development and problem-solving. Our students have surface-level knowledge that they 

have got through memorization of isolated and unlinked facts.  This superficial retention of material 
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for examinations does not promote understanding or long-term retention of knowledge and 

information. 

Our course will focus mainly on equipping the students with problem-solving techniques that will be 
required by the student teachers to be able to teach senior school problem-solving using programming 

languages. Learners should learn by integrating new knowledge with existing knowledge that they 

have acquired elsewhere. The teachers should understand that mental models change slowly, and could 

be improved through active participation of the learners. Faced with a situation in which mental 

models will not work, they should search for meaning, and this meaning is not imposed by direct 

instruction. The student should by himself search for relationships among the materials and interprets 

knowledge in light of the previous knowledge and experiences. 

Deep learning is an approach and an attitude to learning, where the learner uses higher-order cognitive 

skills such as the ability to analyse, synthesize, solve problems, and thinks meta-cognitively in order to 

construct long-term understanding. It involves the critical analysis of new ideas, linking them to 

already known concepts, and principles so that this understanding can be used for problem-solving in 

new unfamiliar contexts. Deep learning entails sustained, substantial and positive influence on the way 

students act, think and feel. Deep learners reflect on the personal significance of what they are 

learning. They are autonomous – they virtually teach themselves. But they are also collaborative 

learners, with high meta-cognitive and learning skills (Almeida J.).  

Current theory suggests a focus not on the instructor teaching, but on student, and effective 

communication between teacher and student. Constructivist theorists believe that approaches to 

learning arise from the student’s perception of the instructor’s requirements. The role of the instructor 

in forming these perceptions is crucial to the student’s understanding of the content being taught. It is 

also crucial to understand that instructors do not directly produce deep learning in the students. It is 

mainly the student’s effort that is important for deep learning to take place. 

The instructor needs to help the students see the purpose of the work they have to do, and to monitor 

their success. Active learning entails discovery; that knowledge acquisition is an on-going process, and 

plenty of uncertainties. Discovery happens in the brain of the learner, which is stimulated to search, 

store, and solve by challenging questions and opportunities to explore them in depth. Making mistakes 

and correcting them are integral parts of the learning process, and should not dissuade the students 

from learning more. 

Our goal is to foster deep learning of principles and skills, and to create independent, reflective, life-

long learners. We feel that achieving this would require active participation of the students. A major 

recommendation to emerge from the literature is that instruction should focus not only on the learning 

of new language features, but also on the combination and use of those features, especially the 

underlying issue of basic program design (Robins et al., 2003). Students are not given sufficient 

instruction on how to combine program pieces together. Good pedagogy requires the instructor to keep 

initial facts, models and rules simple, and only expand and refine them as the student gains experience 

(Robins et al., 2003, Gasparinatou & Grigoriadou, 2011).  

Basic Computer Concepts before Our Method Course 

By the time students enrol in our course that deals with the programming topic, they have already done 
an introductory course in object-oriented programming in java. The course that they have done teaches 

basic object-oriented programming concepts. This is their first course in programming, and statistics 

show that most of our students do not do well in the course. They have surface level knowledge of 

programming structures, and they have very little knowledge of application. Their first course in 

programming teaches very basic java programming that emphasises more on the language; and not on 

application. 

Schools these days provide computer awareness (literacy) classes to their students starting in upper 

primary levels. By the time that they reach senior secondary schools students have gained some 

experience on game software, simple programming in scratch, and the use of day-to-day software used 

on cellular phone and computers. They have also had some experience with basic word-processing 
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software like Microsoft Word, Microsoft Excel, Paint, etc. They have had experience as users of 

computer programs. 

 

Mental Models 

It is important to address the kinds of mental models which underlie programming when we teach 

these programming concepts. Models are crucial to building understanding of control, data structures 

and data representation, program design and problem domain. Active learning literature shows that 

students who are encouraged to actively engage and explore programming related information, by for 

example paraphrasing or restating a problem it in their own words, performed better at problem 

solving and creative transfer (Robbins et al., Ludi, 2005; Thompson & Kinshuk, 2011). 

The encouragement derived from creating a working program can be very powerful. In this context 

students can work and learn on their own and at their own pace. Working on easily accessible tasks, 

especially programs with graphical and animations, can be stimulating and motivating for students. 

Practical tasks, paired or collaborative work and peer learning has also been shown to be beneficial. 

There should also be gradual withdrawal of initial support from the instructor as the students gain 

more and more experience on the previous topics. 

Loops, conditionals, arrays and recursion have all been identified as language features that are 

especially problematic, and could benefit from particular attention. Several authors have suggested, 

however, that the most important deficits relate to the underlying issues of problem solving, design, 

and expressing a solution/design as an actual program. The frequent practical programming exercises 

are almost certainly central in addressing this issue (Robbins et al., 2003). 

Basic Programming Concepts Learnt During Our Course 

Our topic on programming concepts has got four general objectives which are: 

I. Demonstrate knowledge of programming techniques. 

II. Apply algorithmic tools in solving problems. 

III. Show understanding of different programming languages. 

IV. Show understanding of program translators. 

Students are generally supposed to be able differentiate between low-level languages and high-level 

languages, differentiate between program translators, to describe structured programming techniques, 

use tools like flowcharts, pseudo code, and trace tables. 

Most of the work during the semester will be on structured programming techniques. This is the 

difficult part for the students, and the focus of this paper, the part that needs practical application.  

Our students are basically novices to programming. Despite that they have taken an introductory 

programming course in the Computer Science Department, they are still struggling with the basic 

structured programming concepts like sequences, selection structures and loops. Before mastering 

these concepts, there is no way to move on. These are the basics, and there is no way for effective 

application of the concepts before the students master these techniques. Most of everyday applications 

will require the use of these structured programming concepts to implement. 

Like any normal class, we always have ineffective novices into effective ones. According to Robins et. 

al. (2003) ineffective novices “are those that do not learn, or do so after inordinate effort and personal 

attention”, and that “the most significant differences between effective and ineffective novices relate to 

strategies rather than knowledge”, which is available in textbooks and other sources that introduce the 

knowledge in a structured way. The strategies for accessing and applying this textbook knowledge for 

program generation, which is crucial to the learning outcome, generally receive little attention. Active 

learning strategies can be employed for most of the novices to have relevant mental models to 

programming. Active learning strategies will address that which deals with motivation, confidence, 

knowledge and development of the necessary mental models to programming concepts. We need to 

engage the students, and make them want to be effective programmers through their own participation 

and gradual introduction of programming concepts. 
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 Students would have to solve programming problems on their own, answer programming questions, 

discuss individual solutions, and brainstorm ideas during class. We would have to start with simple 

programming constructs, and move on to the more difficult ones gradually. Bring the java language 

late when most of the students have mastered understanding the logic of the program; by the use of 

pseudo code and flowcharts. Our experience shows that the introduction of a specific language early 

will distract attention of the students. It is very easy to de-motivate the students because a simple error; 
like leaving out a semi-colon from a program, can actually cause a student to discontinue trying to find 

a solution to the problem at hand. 

We usually start with sequences, then selection structures then we finally go for loops at the end. Then 

we can bring in examples from a variety of application areas and allow students to suggest and provide 

possible solutions, either individually, or in small groups. Solutions are discussed and shared among 

the class. This way, we make sure that there is involvement of all the students in this topic. We 

encourage solutions in pseudo code and flowcharts. Only when the program logic is understood do we 

start to use the java programming language. The java language that we use has been done by the 

students in a computer science course but the students still have various challenges in it. The use of the 

java language is expected to consolidate their knowledge of the language and also general 

programming concepts.  

The programming topic should be taught in a way that promotes students’ learning experience in a 

supportive teaching environment. We suggest that this topic on programming concepts should be 

based entirely on constructivist teaching methods and implement active learning. This topic provides 

the techniques required for the study of designing solutions to computer-based problems, designing of 

input/output, use of algorithmic tools and modular designs to solve computer-based problems; and that 

will help in the formulation and analysis of computer-based problems later in life. 

The discussion that follows uses the Active-Learning-Based Teaching Model suggested by Hazzan et 

al., (2011). This model is suggested for implementation in the teaching of a computer science method 

course. 

Basic Active Learning Structure 

According to Felder & Brent (2009), there are three basic steps involved in the basic active learning 

structure: 

a. Tell the students to organise themselves into groups of 2-4 and randomly appoint a recorder 

in each group if writing will be required. 

b. Pose a challenging question or problem and allow enough time for most groups to either 

finish or make reasonable progress toward finishing. The problem could actually be broken 

into small, several steps and treat each step as a separate activity. 

c. Call on several individuals or groups to share their responses. Then discuss the responses. 

The active learning literature offers many variations of the above approach. Others of the commonly 

used approaches include: 

I. Think-pair-share: whereby a problem is posed and students work on it individually for a 

short time; then have them form pairs and reconcile and improve their solutions. 

II. Thinking aloud pair problem solving: have the students get into pairs and designate one pair 

member as the explainer and the other pair as the questioner. Give the explainers to explain 

the problem statement line by line to their partners, and tell the questioners to ask questions 

when explanations are not clear. Proceed in this manner until the exercise is complete. 

Explainers and questioners may change roles during the whole problem solution. In 

programming exercises, this will significantly help in the understanding of the problem to be 

solved, which is a needed skill in problem analysis.  

Role Played By Pupils in an Active Learning Environment 

An active learning environment is a constructivist. Society today needs young people who are flexible, 

creative, and proactive who can solve problems, make decisions, think critically, communicate ideas 
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effectively and work efficiently within teams and groups. The ‘knowing of knowledge’ is no longer 

enough to succeed in the increasingly complex, fluid, and rapidly evolving world in which we live. 

Students need to have opportunities to develop personal capabilities and effective thinking skills as 

part of their well-rounded education. By using active-learning methodologies, students change from 

being passive recipients of knowledge to active and participatory learners. 

Passive Learning Active Learning 

Being passive recipients of 

knowledge 
Active and participatory learners 

Focus on answering questions Asking questions 

Being ‘spoon fed’ 
Taking responsibility for their own learning – reflective 

learners 

Competing with one another Collaborating in their learning 

Wanting to have their own say Actively listening to opinion of others 

Learners of individual subjects Connecting their learning 

Rationale for the Implementation of Active Learning in Programming 

It is suggested in Hazzan et al., (2011) that active learning may also promote the professional 

development and perception of the prospective computer science teachers, as the following 

justifications propose. 

Firstly, according to constructivism, new knowledge is constructed gradually, based on the learner’s 

existing mental structures and on the feedback that the learner receives from the learning 

environments. In this process, mental structures are developed in steps, each elaborating on the 

preceding ones. One way to support such gradual mental constructions is by providing learners with a 

suitable learning environment in which they can be active (Ragonis & Hazzan, 2010). The working 

assumption is that the feedback, provided by learning environment in which learners learn a complex 

concept in an active way, may support mental constructions of the learned concepts. In our case, in 

order to support the construction of the computer science teachers’ professional perception of 

programming concepts, students enrolled in our course must have a learning environment that supports 

this mental construction (Hazzan & Ragonis, 2011). 

In order to support the construction of the professional perception in the method course, it is important 

that during the course, the student teachers experience acting different roles. Sometimes, the student 

teacher plays the role of a senior school pupil and is asked to perform senior school level assignments. 

At other times, they wear the hat of the computer science teacher. “As it turns out, active learning 

enables the switching between such situations in a very natural manner” (Hazzan & Ragonis, 2011). 

The student teacher can improve the construction of their professional perception also by incorporating 

reflective processes into the construction process (Ragonis & Hazzan, 2010), by becoming reflective 

practitioners. Hazzan & Ragonis (2011) asserts that reflective practitioners are professionals who 

continuously improve their professional skills based on their on-going reflection with respect to their 

professional performance. Active leaning will encourage reflective on the part of the student teachers 

since it provides learners with an opportunity to reflect on the activities they perform during class as 

part of the class activity. 

The student teachers will experience implementation of various teaching methods that can be 

incorporated during active learning. Based on the constructivist approach, the student teacher’s 

experience of different teaching methods promotes their understanding of the methods’ advantages and 

disadvantages. 
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Active learning will also increase the student teacher’s awareness of the existence of a cognitive 

diversity in general among the students. He will be able to use appropriate pedagogical tools and 

therefore be able to offer substantial help for the situations they will meet in their future work with 

senior school students.  

The student teacher will also develop high order thinking skills of analysis, critical thinking, synthesis, 

and evaluating tasks, skills that are relevant today in the  

Active-learning-based teaching model 

The Active Learning Based Teaching Model (Hazzan et al., 2011) consists of four stages – trigger, 

activity, discussion, and summary and is illustrated in Figure 1. 

 

Figure 1. Active-Learning Teaching Model from Harzan et al., 2011 

First stage: Trigger 

For this purpose, the student teachers are presented by a challenging active-learning-based trigger, an 

open-end activity of a kind with which they are not familiar. Specifically, a trigger should enhance and 

foster meaningful learning and should have the potential to raise a wide array of questions, dilemmas, 

attitudes, and perceptions. It is proposed that a trigger should be realistically complex and relevant for 

the learners. Depending on the trigger’s main objective, the activity can be worked on individually, in 

pairs or in small groups (Hazzan et al., 2011). 

One of the main objectives of introducing a new topic using a trigger is to train the student teachers 

how to face and deal with open-ended and unfamiliar situations. Such situations, which are so 

predominant in computer science education require student teachers to consider multiple reaction 

options. In order to achieve this objective, it must be possible to approach a trigger in more than one 

way. Furthermore, a well-designed trigger exposes the students to a rich and varied mix of computer 

science and pedagogical aspects. Throughout the model stages, this vast collection of ideas is 

discussed, elaborated, refined and re-organized (Hazzan et al., 2011). 

Second stage: Activity  

The students work on the trigger presented to them. The duration of this stage is determined by the 

complexity of the trigger used and on its educational objectives. 

Third stage: Discussion 

After the required period of time, during which the students work on the trigger either individually, in 

pairs, or in small groups, the entire class is gathered. 

At this stage, products, topics and thoughts that originated during the activity stage are presented to the 

entire class and are discussed. The students refine their understanding of concepts, attitudes, and ideas, 

as part of the construction process of their professional perception. 
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The instructor highlights important ideas presented by the students and emphasizes principles derived 

from these ideas. In order to convey the notion that no unique solution exists for most teaching 

situations in general, and for the specific activity presented by the trigger in particular, the instructor 

does not judge students’ positions and opinions. At the same time, however, classmates are 

encouraged to react and express their opinions and their constructive criticism with respect to the 

different ideas or materials presented. 

Fourth stage: Summary.  

This stage puts the topic into the context of the course and emphasizes the concepts that were 

discussed. It is managed differently than the three previous stages. First, it is significantly shorter. 
Second, while in the first three stages the students are the main actors, in the Summary stage, the 

course instructor takes front stage. The instructor wraps up, summarizes and highlights central 

concepts, teaching ideas, conceptual frameworks, and other related topics that were raised and 

discussed during the previous three stages. It is also important to note that the students can be asked to 

take the front stage here and act as a constructor with the guidance of the teacher (Hazzan et al., 2011). 

The summary can be expressed in different forms, such as a framework formulation, listing 

connections between the said topic and other topics, concept map, and so on. 

The Role of the Instructor in the Active-Learning-Based Teaching Model 

The instructor has to create a supportive intellectual environment that encourages students to be fully 

active during the whole class period. 

In the first Trigger stage, the instructor presents the trigger to the student teachers. 

In the second Activity, stage the instructor circulates among the different groups and listens to 

individual opinions, is sensitive to what they say, and encourages them to deepen their thinking. When 

needed, the instructor guides the students in their discussion. Though the guidance should encourage 

alternative thinking approaches, the instructor is advised not to dictate any position. 

In the third Discussion stage, the instructor must act as a good listener and be sensitive to crucial 

points suggested by the students. Specifically, the instructor should encourage the students to explain 

why and how they developed their suggestions, suggest exploring different options, foster reflection 

processes, all without passing judgment on the students’ opinions. The instructor highlights the 

important points of each opinion and presents possible connections between different ideas. 

In the fourth Summary stage, the instructor sums up the ideas presented during the previous stages. 

This summary highlights the main points that were discussed. The instructor adds new ideas and 

clarifications that were not suggested by the students themselves. 

CONCLUSIONS 

This paper explains the implementation of an active-learning model proposed by Hazzan et al., (2003) 

in the teaching of a topic on programming languages for a pre-service computer studies method 

course. The paper explains how the model is used with novice students, the role that the students 

should play, and the role of the instructor in order to make the students participate in the process. The 

more active learners are, the more meaningful is their understanding of the programming topic since 

learning takes place inside the learner. It is important to encourage the students to work together, talk 

computing language, and provide opportunities to challenge their mental models. 
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