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Abstract: We studied the spatial and temporal habitat use of impala in Botswana’s Okavango Delta at landscape level
with the aid of satellite imagery, with minimal fieldwork. We related remotely sensed vegetation to impala habitat
preferences, by first distinguishing three vegetation types through a multi-temporal classification, and dividing these
into subclasses on the basis of their Normalized Difference Vegetation Index (NDVI). This indicator for abundance
and greenness of biomass was assessed for wet and dry season separately. Similarly, habitat use was assessed for both
seasons by allocating vegetation classes to bimonthly impala observations. Impala distribution patterns coincided
with NDVI-based subclasses of the landscape, nested within broad vegetation types, to which impala did not show
a marked seasonal response. We suggest that this methodology, using limited field data, offers a functional habitat
classification for sedentary herbivores, which appears particularly valuable for application in extensive areas with high
spatial variability, but with restricted access.
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INTRODUCTION

Basic needs of animals, that is forage, water and shelter,
frequently vary spatially and temporally. Therefore,
animals do not range randomly, but are distributed in
relation to variation in these parameters (Hutchinson
1957, Krebs 1985, Sinclair 1983). The temporally
changing features to be considered for studying herbivore
habitat use are therefore to be sought at the landscape
scale, and include vegetation cover, forage availability
and forage quality. Remote-sensing techniques offer
opportunities to map both shelter and shade, as well as
forage characteristics. Physiognomic landscape features
indicate the distribution of shelter and shade in the
landscape, and these can be derived directly from spectral
information on various imagery bands. Forage-related
indices include the widely applied Normalised Difference
Vegetation Index (NDVI) (Lillesand & Kiefer 2000).
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Chlorophyll level, indicative of the greenness of the
vegetation, and Leaf Area Index (LAI) indicating the
vertical thickness of the vegetation, largely determine
NDVI values. Generally, LAI will increase with the
thickness of the green layer or with the number of
green layers. Chlorophyll level and LAI have been
successfully correlated with vegetation characteristics
important to herbivores, such as phytomass, amount of
green cover, productivity, photosynthetic activity (Huete
1989, Wessman 1994) and leaf nitrogen content (Turner
et al. 1992). High NDVI values are usually associated with
well-developed green vegetation such as closed canopy in
woodland or a continuous green grass layer, whereas
low NDVI values are generally associated with a non-
continuous vegetation cover or a non-green cover like
exposed bare soil or water.

Past studies on the modelling of animal habitat using
remote-sensing techniques at landscape scale include
bird habitat analyses (Homer et al. 1993, Osborne
et al. 2001, Saveraid et al. 2001). Ottichilo et al. (2000)
and Verlinden & Masogo (1996) related distribution of
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migratory large herbivores to rainfall data and satellite-
derived NDVI at a regional scale, in the Masai Mara and
the Kalahari respectively. Zinner et al. (2002) studied the
distribution of grivet monkeys (Cercopithecus aethiops) in
Eritrea, also at a regional scale, using vegetation classes
and NDVI derived from Landsat satellite imagery, as well
as auxiliary data concerning altitude, annual rainfall, and
distance to settlements and rivers. These studies indicate
the usefulness in relating NDVI and remotely sensed
vegetation classes to herbivore distribution at landscape
and regional scales, but it remains unclear whether this
approach would also be applicable to non-migratory
animals at a detailed, landscape scale, under seasonal
conditions, without clear rainfall gradients, and in the
absence of auxiliary data. We are particularly interested
in this goal, using a limited input of ground data, while
acknowledging spatial variability and gradual change in
vegetation characteristics.

We propose that a functional differentiation in natural
vegetation units can be reached with respect to herbivore
distribution, by incorporating both physiognomy and
NDVI into one nested classification system. Vegetation
classified into broad physiognomic classes masks the
variation in quality and quantity of forage within these
broad types, and providing more detail in physiognomy-
based classification does not achieve the goal of linking
animal distribution to an index of habitat quality
either. On the other hand, distinction of the vegetation
based purely on NDVI is expected to yield a similarly
broad distinction among vegetation classes as by
physiognomic classification, since variation in NDVI
between physiognomic vegetation classes will be much
greater than within these classes (Peterson & Running
1989, Sellers 1989). Moreover, the addition of an
NDVI-based classification, nested within a physiognomic
classification, is expected to yield differences in the
qualitative and quantitative aspects of potential forage.
This paper describes a technique for creating a functional
habitat differentiation at a detailed, landscape scale,
by classifying the vegetation firstly in terms of its
physiognomy, and secondly by differentiating these
classes further based on their gradient in LAI and
chlorophyll levels, as indexed by the continuum of NDVI
values. Thus, the vegetation was first classified into broad,
remotely sensed vegetation types, and each vegetation
class was then subdivided into distinct NDVI classes.

Apart from ground-truthing for broad vegetation
types, this classification does not require additional field
information. We chose impala (Aepyceros melampus) as
a model herbivore for our distribution study, as this
species is widely distributed in Southern Africa. Impala
are mixed feeders of medium size (females 40–45 kg,
males 60–65 kg; Jarman & Jarman 1973), drinking-water
dependent, and are known to occupy a wide array of
habitats throughout much of southern and eastern Africa

(Kingdon 1997, Skinner & Smithers 1990). Our study
site was situated in the vast and generally inaccessible
Okavango Delta, Botswana. We hypothesize that impala
shows a response in occupancy of habitat units based
on broad vegetation classes and NDVI. The development
of a widely applicable methodology for prediction of
herbivore presence is especially relevant for large and
mostly inaccessible areas, where field data are difficult
to obtain.

METHODS

Study area

Our study area was located in the Okavango Delta
in north-western Botswana (Figure 1), (23◦06′−13′E,
19◦30′ − 32′S). The Delta, including the sandveldt
tongues and the dryland areas, comprises an area of
approximately 22 000 km2 (Ellery & Ellery 1997). The
area is highly heterogeneous, largely difficult to access
especially at some times of the year, and can be divided
into four regions: the Panhandle, the upper permanent
swamps, the lower seasonal swamps and a number of
large sandveldt tongues and islands (Ellery & McCarthy
1994).

The dynamics of the Okavango Delta are largely
driven by two phenomena, rainfall and inundation of
the floodplains. Most rainfall occurs between November
and April (Gieske 1997), and the dry season lasts from
May until November. The relative flatness of the area
in combination with rainfall in the Angolan highlands
drive the flooding, which reaches its peak in our
study area in August, some 6 mo after the upstream
rainfall (Gieske 1997, McCarthy et al. 2000). Basically,
the dryland nutritional value of the vegetation varies
with the seasons, peaking in the early wet season,
and declining thereafter until the late dry season. The
flooding occurs during the local dry season, limiting
the area available for foraging, but also inducing
some regrowth of grasses on the floodplain after the
water recedes.

Data collection

Impala locations. The data on impala habitat use were
taken from three successive field study reports. These
studies were carried out for nearly 1 y, from October 2000
until August 2001 (Hof 2003, Klop & van Goethem
2001, Slot 2002, Van Munster, unpubl. data). The data
were collected on a bimonthly basis, and involved the
use of four line transects (Figure 2): Croc (8 km), Lion
(11 km), Bushcamp (13 km) and Mopane (5 km). All,
with the exception of Croc transect, are situated in the
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Figure 1. Map of the study area in the Okavango Delta, Botswana (adapted from Ellery & McCarthy 1994) and approximate location of the study site.
The ‘impala study site’ is provided in more detail in Figure 2.

Moremi Game Reserve on Chief ’s Island, and comprise
a somewhat smaller area than used for vegetation
classification (Figure 1). Restricted accessibility due to
flooding resulted in a slight alteration of the transects
for the August period.

A handheld GPS was used to record the walked
transect lines and the location where an animal or
group of animals was observed. At each sighting the GPS
coordinates, estimated sighting distance, and compass
direction subtended from north were recorded. To avoid
dependence, each group of animals was counted as one
single observation. In case a group was encountered,
the geometric centre of the group was considered in the
recordings. An Arcview script was used to estimate the
actual location of the animals, based on the observer’s
GPS location, estimated observation distance, and
compass reading (Hof 2003, Klop & van Goethem 2001,
Slot 2002, Van Munster, unpubl. data).

Remote-sensing imagery. The Landsat 7 ETM+ images,
path 174 and row 074 covering the south-eastern part of

the Okavango Delta, were obtained from SAFARI 2000
(Swap & Privette 1999) through the Tropical Rain Forest
Information Centre. Images from 3 April and 9 August
2000 (Figure 2) were used.

Geo-rectification of the Landsat images (30 m pixel size),
to correct for the distortion in the images and place them
into known geographic space (i.e. coordinate system), was
reached through GPS-collected ground control points,
resulting in a precision for the April and August image
of 8.2 and 7.4 m respectively. To combine both images for
classification, they were superimposed to form one multi-
temporal image.

We gathered 600 training sets of representative
vegetation classes during field visits in 2001. For
each vegetation class the training set was randomly
divided into two groups, one for training purposes, the
second for accuracy assessment. These training sets were
subsequently used for a supervised classification of the
three vegetation types. The area considered in the training
set gathering and classification, comprises a larger area
than the impala-distribution study area (Figure 1). In
doing so we expected that the adopted methodology
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Figure 2. Study site, April (a) and August (b) Landsat image (black and white version of Landsat band combination 4, 5, and 3) of the impala study
site in the Okavango Delta, Botswana, including transect locations.

would be strengthened in its general applicability and
usefulness in extensive areas.

The NDVI was calculated for each pixel in both the
April and August images. The April image represents the

end of the wet season, when peak biomass levels have
been reached. The August image, the middle of the dry
season, shows a strong difference between water-covered
floodplain and the dryland covered with desiccated and
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yellow grass, bare patches, and mostly leafless trees.
The NDVI was calculated as follows (Lillesand & Kiefer
2000):

NDVI = (NIR − R)/(NIR + R)

where NIR = near-infrared value and R = visible red
value. High positive NDVI values are reported to
correspond to dense green vegetation cover, whereas
negative values are usually associated with bare soil and
other non-vegetated surfaces.

Vegetation classification. The multi-temporal image was
classified using the software package ERDAS Imagine. In
the classification, three physiognomic vegetation types
were distinguished, woodland, grass on dryland, and
grass on floodplain. Each of these types was subdivided
into three subclasses on the basis of the NDVI values
available within each type. For all the pixels classified
as one of the above-mentioned vegetation types, their
respective NDVI value was determined, so that for each
vegetation type a range of NDVI values is obtained.
Subsequently, these ranges were divided into three
subclasses, and consisted of low, intermediate and high
NDVI values. This was reached through ranking the NDVI
values for all pixels in each vegetation type, whereby
the lowest one-third, the intermediate one-third and the
highest one-third of all NDVI values were assigned to each
subclass.

In order to assess the accuracy of the classification
procedure, the overall accuracy of the classification gives
the proportion of correctly classified reference pixels
for all vegetation types combined, whereas accuracies
specific per vegetation type are assessed through user and
producer accuracy. Overall, producer and user accuracy
are calculated as follows:

Overall accuracy: total number of correct pixels/total number
of reference pixels × 100%

Producer accuracy: number of correct pixels per vegetation
type/number of reference pixels per vegetation type × 100%

User accuracy: number of correct pixels per vegetation
type/number of classified pixels per vegetation type × 100%

Producer accuracy indicates the proportion of correctly
classified reference pixels per vegetation type. A
vegetation type with a high producer accuracy suggests
that the vegetation type’s presence in the field is well
estimated. The user accuracy indicates the proportion of
correctly classified pixels of the total number of pixels
assigned per vegetation type. A vegetation type with a
high user accuracy suggests that pixels are likely to be
correctly classified.

Assessment of available habitat

The software package Distance 3.5, was used to estimate
the so-called effective strip width (ESW), the area ef-
fectively surveyed from a transect for purpose of wildlife
population assessments. We used the ESW as a correction
factor for the classified images to estimate the availability
of impala habitat (i.e. vegetation subclasses). The method
is based on the locations of animals sighted from a
transect. For each animal detected, the perpendicular
distance between animal and transect was calculated. The
ESW of the main vegetation types (i.e. woodland, grass
on dryland, and grass on floodplain) was determined for
each transect separately. Perpendicular distance from the
sighted animal to the transect, was used as input for the
Distance software. The derived effective strip widths were
used to generate observation zones around the transect
lines, representing the area estimated to be visible from
these transects. To extract the available area for the
vegetation subclasses, both April and August vegetation
maps were superimposed on the calculated observation
zones.

Analysis of habitat use

Selectivity of impala for vegetation classes was deter-
mined for both periods. We only used animal observations
within a 12-wk period encompassing the image recording
dates, to ensure that the observations related to each
period’s NDVI. A timespan of 12 wk was necessary to
obtain enough validation data on impala locations, given
the logistic constraints in our sampling efforts. Although
this appears to be a large time-span, we were confident
that the main phenological contrasts between the April
and August periods would remain in place. The impala
locations in the respective periods were superimposed on
the classified maps for April and August, from which we
calculated the impala habitat-use values.

The number of observations of a species within the
recognized vegetation types were compared with the
availability of each vegetation type, by following
the methodology of Neu et al. (1974) and Byers &
Steinhorst (1984). A χ2 goodness-of-fit test (α = 0.05,
n = 9) was applied to test for selection of vegetation
classes. When a significant difference was found, the
Bonferroni approach was applied to determine which
of the vegetation types were selected or avoided. The
Bonferroni approach involves the construction of a set
of simultaneous confidence intervals (α = 0.05, n = 9)
around the observed proportions of utilized vegetation
types. Where the expected proportion of usage did not lie
within the interval, it was concluded that the expected
and observed utilization of that vegetation class were
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significantly different, and either avoidance or preference
occurred.

RESULTS

Vegetation classification

A mono-temporal classification for both images,
resulted in a 77.7% overall accuracy for both April
and August. A multi-temporal classification improved
accuracy to 81.1%. However, the latter classification
showed a considerable underestimation for grass on
dryland (producer accuracy 18%) and a subsequent
overestimation of the other two types. To improve upon
this, a classification with adjusted maximum likelihood
probabilities was applied, that enlarged the probability of
the underestimated type, and vice versa. This resulted in
an overall accuracy of 83.9% (Table 1), and decreased
the underestimation of grass on dryland. User accuracies
ranged from 80–87%, and producers accuracies from
81–93%, with the exception of grass on dryland (30%)
(Table 1).

Table 1. Classification accuracy assessment. Overall, producer and user
accuracy of the number of pixels correctly classified as landcover
types (i.e. physiognomic vegetation types and open water) through a
multi-temporal classification of the study area in the Okavango Delta,
Botswana.

Producer User
Reference Classified Correct accuracy2 accuracy3

Class name totals totals totals (%) (%)

Grass on floodplain 87 85 70 80.5 82.4
Woodland 152 178 142 93.4 79.8
Grass on dryland 43 15 13 30.2 86.7
Open water 73 77 73 100.0 94.8

Column totals 355 355 298

Overall accuracy 1 83.9%

1Overall accuracy: the proportion of the total correctly classified
reference pixels (total number of correct pixels/total number of reference
pixels × 100%).
2Producer accuracy: the number of correctly classified pixels of a specific
class in comparison with the number of reference pixels of that class
(number of correct pixels per vegetation type/number of reference pixels
per vegetation type × 100%).
3User accuracy: the number of correctly classified pixels of a specific
class in comparison with the number of pixels classified as that class
(number of correct pixels per vegetation type/number of classified pixels
per vegetation type × 100%).

The vegetation types distinguished were subdivided on
the basis of their NDVI, for both April and August. The
NDVI varied from − 0.50 to 0.66 in the green, late-wet-
season month of April, while NDVI in the dry month
of August varied less, from − 0.33 to 0.53 (Table 2).
The accuracies of the subdivided types were assumed
to approximate the accuracy of the classification for the
broad physiognomic vegetation types. In both periods the
largest variation in NDVI is shown for grass on floodplain,
followed by woodland, and then by grass on dryland.

Available habitat

For each transect and for each vegetation class, the width
of the observation zone was determined (Table 3). Due to
the absence of grass on floodplain on the Mopane transect,
there are no observations for this type, and estimation of
the effective strip width could not be performed. Reliability
of the ESW for grass on floodplain on the Lion transect and
for grass on dryland on the Mopane transect is expected to
be low, due to the limited number of impala observations
here.

Vegetation-class availability figures from April and
August differed slightly due to flooding-induced alteration
of the transects in August (Table 4). Most of the
observation area was covered by woodland, in April 57%
and August 60%. Grass on floodplain made up 40% and
36% of the area, and grass on dryland 3% and 4%, for
April and August respectively. Woodland and grass on
dryland included relatively large areas with high NDVI
values, whereas grass on floodplain had rather similarly
sized NDVI subclasses.

Habitat use

The estimated impala locations were superimposed
on the classified images. For the April period this
resulted in 167 observations allocated to a vegetation
subclass, against 97 impala observations around August
(Table 5). Impala use of vegetation subclasses in April
and August differed from the relative availability of those
subclasses both in April (χ2 = 38.5, P < 0.05) and in
August (χ2 = 19.3, P < 0.05). More specifically, impala
preferred woodland with intermediate NDVI values in
both April and August, but were indifferent to, or even

Table 2. Range of NDVI levels for each subclass (low, intermediate, high NDVI) of physiognomic vegetation types, per season, of the study area in the
Okavango Delta, Botswana.

April 2000 August 2000

Vegetation type Low Intermediate High Low Intermediate High

Grass on floodplain −0.50−0.19 0.20−0.28 0.29−0.66 −0.33−0.03 0.04−0.09 0.10−0.53
Woodland −0.38−0.22 0.23−0.29 0.30−0.65 −0.33−0.01 0.02−0.06 0.07−0.46
Grass on dryland −0.28−0.16 0.17−0.22 0.23−0.55 −0.10−0.01 0.00−0.01 0.02−0.30
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Table 3. Width of the observation zones (m), determined by Distance
3.5, for each transect (Bushcamp, Croc, Lion and Mopane) and for each
physiognomic vegetation type (grass on floodplain, woodland, and grass
on dryland), based on impala observations.

Vegetation type Bushcamp Croc Lion Mopane

Grass on floodplain 68 84 331 −2

Woodland 29 22 32 52
Grass on dryland 39 53 63 351

1Number of observations is considered too small for a reliable estimate
of the Effective Strip Width (ESW).
2No observations, and no ESW determined.

avoided, other woodland subclasses (Table 5). Impala
avoided grass on dryland with low NDVI values in both
seasons, and were indifferent to the other subclasses in
grass on dryland. Impala avoided grass on floodplain with
high NDVI values in both periods, as was also the case with
grass on floodplain with low NDVI values for the April
period; they appeared indifferent to all other subclasses in
both periods.

DISCUSSION

Classification accuracy

Our classification accuracies, mostly over 80%, compare
favourably to previously published work where classi-
fication accuracies using Landsat imagery were
actually reported. Tanser & Palmer (2000), studying
heterogeneous vegetation cover of the Great Fish River
basin in South Africa, found an accuracy of 77%.
Conese & Maselli (1994) reported 85% for their study
in southern Senegal on subtropical land cover types,
whereas Gomarasca et al. (1992), studying the floodplain
and dryland vegetation of the Niger River Interior
Delta in the Republic of Mali, reported 77% (wet
season) and 66% (dry season) accuracies. Furthermore,
since all of our vegetation classes showed a high user
accuracy, pixels were likely correctly classified. The
low producer accuracy for grass on dryland (30%)
suggests that this vegetation type is likely to be
underestimated in our classification, whereas grass on
floodplain and woodland – which covered the largest

parts of our study area – were for the larger part correctly
represented.

Assessment of available habitat

The accuracy of the availability assessment is determined
by (1) the observation zone estimate, and (2) the
vegetation classification. The observation zones vary in
width both within and between vegetation types. This
can be explained by the vegetation structure and animal
sightings in the field. The found observation zones appear
to be plausible, as they correspond with differences
in patchiness and visibility among the physiognomic
vegetation types. Grass on floodplain generally offers a
higher visibility than grass on dryland or woodland, as
it generally covers extensive open areas that offer clear
views. Grass on dryland is of a more patchy nature and
thus generally offers more limited sighting, while the most
restricted view is found in woodland, especially in dense
types such as mopane woodland or riverine forest (van
Bommel, pers. obs.). For grass on floodplain and woodland
the availability appears to be well estimated as both
classification and observation zones are accurate. The
availability assessment for grass on dryland is hampered
by the classification, which appears to underestimate
the presence of grass on dryland, and therefore the avail-
ability data for this vegetation class should be interpreted
with caution.

Impala habitat use

In the late-wet season (April), water levels are low and
reflectance is mainly determined by green vegetation,
rather than by water or soil background. High NDVI
values in woodland are interpreted as closed-canopy
riverine forest, and open-canopy mixed woodlands with a
well-developed grass layer. Low NDVI probably represents
mopane woodland, that has a low LAI due to the absence
of a continuous grass layer. The intermediate NDVI
values are likely to be found in open-canopy Acacia
or mixed woodlands. Variation in NDVI for grass on
floodplain might be explained by reedbeds high in LAI
and chlorophyll level, while areas that experience a high

Table 4. Availability (ha) of the subdivided (low, intermediate, high NDVI level) vegetation types (grass on floodplain, woodland and grass on dryland)
based on the through Distance 3.5 determined observation zones, for the classified April and August 2000 images.

Grass on floodplain Woodland Grass on dryland

Inter- Inter- Inter-
Period Low mediate High Total Low mediate High Total Low mediate High Total Total

April (ha) 29.6 33.8 43.5 106.9 9.1 44.0 98.6 151.7 0.4 0.8 6.0 7.2 265.9
(%) 11.1 12.7 16.4 40.2 3.4 16.5 37.1 57.1 0.2 0.3 2.3 2.7 100.0

August (ha) 19.4 32.5 40.5 92.4 17.0 55.1 80.7 152.8 0.5 2.4 5.9 8.8 254.1
(%) 7.6 12.8 15.9 36.4 6.7 21.7 31.8 60.1 0.2 0.9 2.3 3.5 100.0
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Table 5. Selection of vegetation subclasses by impala for the April and August 2000 periods, with Bonferroni simultaneous probability intervals.

NDVI Expected Impala Observed
Vegetation type subclass proportion sightings proportion Selection1

April period
Grass on floodplain low 0.111 6 0.005−0.103 −
Grass on floodplain interm. 0.127 16 0.032−0.160 0
Grass on floodplain high 0.164 10 0.008−0.111 −
Woodland low 0.034 11 0.012−0.120 0
Woodland interm. 0.166 47 0.184−0.379 +
Woodland high 0.371 71 0.318−0.533 0
Grass on dryland low 0.001 0 0.000−0.000 −
Grass on dryland interm. 0.003 1 0.000−0.023 0
Grass on dryland high 0.023 2 0.000−0.036 0

Sum 1.000 167

August period
Grass on floodplain low 0.076 5 0.000−0.115 0
Grass on floodplain interm. 0.128 9 0.010−0.175 0
Grass on floodplain high 0.159 6 0.000−0.131 −
Woodland low 0.067 6 0.000−0.131 0
Woodland interm. 0.217 36 0.233−0.509 +
Woodland high 0.318 33 0.205−0.475 0
Grass on dryland low 0.002 0 0.000−0.000 −
Grass on dryland interm. 0.010 1 0.000−0.039 0
Grass on dryland high 0.023 1 0.000−0.039 0

Sum 1.000 97

1: avoidance; 0: indifference; +: preference (α = 0.05, n = 9).

grazing pressure or that are partly flooded will be low in
LAI, and thus in NDVI. Grass on dryland is expected to
vary in NDVI mostly with LAI, which is a function of grass
height and density, and of the presence of sparse trees.

In the late-dry season (August), the dryland is covered
with desiccated and yellow grass, bare patches, and
mostly leafless trees, with the exception of riverine
forest and grass on floodplain. The variation of NDVI
in woodland is therefore expected to be caused by the
high LAI and associated high NDVI in riverine forest,
and on the other hand by leafless and grassless mopane
woodland, with low LAI and chlorophyll levels. For grass
on floodplain the large variation might be explained by the
presence of recently flooded areas exposing only water,
very low in NDVI, and reedbeds or fresh regrowth in the
floodplains with high chlorophyll levels, and therefore
high NDVI values. Factors influencing the NDVI of grass
on dryland could be the presence of sparse trees or the
variation in presence of bare soil.

Grass on floodplain. We interpret the avoidance or neutral
preference by impala of grass on floodplain NDVI classes
in April and August as a valid result for both periods.
Reedbeds, high in NDVI, are notably poor impala habitat
at any time of the year, and particularly hard to get to
in August. The permanently wet part of the floodplain
always offers little suitable forage to these herbivores.
Low NDVI areas in April are likely dry or intensely
grazed areas that are low in green biomass, such as lower

parts of the floodplain that were still flooded in prior
months. Furthermore, impala are often observed near
forest boundaries, which are notably absent near much
of the floodplain.

Woodland. The preference of impala for woodland
intermediate in NDVI values, and the indifference for other
woodland types is also regarded as valid for both periods.
For both April and August, areas of intermediate NDVI are
likely associated with Acacia and mixed woodland, but
not with mopane woodland or riverine forest. Mopane
woodland is conspicuously poor in palatable grasses,
and mopane leaves are generally believed to have a
low palatability to large herbivores. The indifference
towards riverine forest, which does offer food resources
of mixed quality to impala, could be explained by the
limited number of impala sightings, due to the particularly
low visibility of this vegetation type, whereas impala do
perhaps occur at higher densities here.

Grass on dryland. The avoidance and indifference of im-
pala for grass on dryland subclasses have to be carefully
interpreted, as grass on floodplain was underestimated in
the classification, and therefore also in the assessment of
available habitat. For a subclass covering only a minor
area, such as grass on dryland low in NDVI values,
the observed proportion of habitat use is zero (Table 5),
and therefore the upper and lower boundary of observed
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occurrence are also set to zero. This implies that the
expected proportion of occurrence always falls outside
the observed boundaries, making the avoidance for grass
on dryland low in NDVI, for both April and August,
questionable.

Seasonal impala distribution. Overall, the field data indicate
that there is no important shift in impala preference for
habitat between late-wet and late-dry season, and that
this consistency is captured by the NDVI-based vegetation
subclasses. This observation is in line with the finding that
impala show an annually consistent habitat preference
(Ben-Shahar 1995).

Remote-sensing in animal habitat studies

The findings of this study clearly suggest that the chosen
methodology, to incorporate remote-sensing-derived
NDVI subclasses into broad physiognomic vegetation
types, can be applied to relatively sedentary animals
like impala at landscape scale, under seasonally different
conditions. This has brought the work conducted by
Verlinden & Masogo (1996) and by Ottichilo et al. (2000)
on relating migratory herbivores with NDVI, and the
NDVI-based studies of Oindo (2002) and Seto et al. (2004)
on animal biodiversity, to a more detailed, landscape
level. Furthermore, contrary to other studies (Ottichilo
et al. 2000, Parra et al. 2004) we omitted environmental
gradients, such as rainfall patterns, from mapping
functional landscape characteristics. Yet, our results
suggest that impala displayed selectivity for vegetation
subclasses assigned on the basis of NDVI characteristics
only, which is also a simplification compared to the use of
auxiliary data in the study of sedentary grivet monkeys by
Zinner et al. (2002). Some of the shortcomings in our study
included the arbitrary numerical split of NDVI subclasses
into thirds according to the number of pixels in each
vegetation type, and by the use of relative spatially coarse
imagery in the classification of highly heterogeneous
landscape elements. These should be overcome by further
studies that can provide further insight in obtaining
functional breakpoints of NDVI subclasses and the
application of the NDVI within herbivore habitat studies
in general. A necessary improvement of the classification
should include an error analysis of the NDVI subclasses.
Given the recent progress in the fields of satellite tracking
of animals in the field (Amstrup et al. 2004) and remotely
sensed vegetation quality assessment (Mutanga et al.
2004), a strong link between animal movements and
functional vegetation analysis using remote sensing is
within reach. This would be of particular relevance
for the conservation and management of herbivores in
inaccessible areas.

Conclusion

The results show that our classification methodology is
capable of capturing habitat occupancy by a sedentary
large herbivore, impala, in a spatially and seasonally
diverse landscape. We suggest that this is due to
differences in vegetation characteristics determining
forage quality and quantity (NDVI) and that impala
shows a functional response. Further studies, directed
towards linking forage quality and availability with
NDVI levels nested in physiognomic vegetation types,
will further improve our understanding of remote-sensing
based studies on habitat use. This study suggests that the
application of remote-sensing techniques may contribute
to animal habitat studies at a landscape scale, without
the need to sample a wide range of field data under time
and budget constraints. We suspect that this technique
would work even better for other herbivore species
with stronger habitat selection characteristics than the
generalist impala. We therefore consider this approach
to be useful for describing functional habitat types for
a range of herbivore species, sensitive to forage quality
changes over time, in large areas. Moreover, this approach
will likely benefit the preservation of individual species in
extensive conservation areas.
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