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Abstract. Polynomials and exponential polynomials play a fundamental
role in the theory of spectral analysis and spectral synthesis on commu-
tative groups. Recently several new results have been published in this
field ([2], [3], [4], [6]). Spectral analysis and spectral synthesis has been
studied on some types of commutative hypergroups, as well. However,
a satisfactory definition of exponential monomials on general commu-
tative hypergroups has not been available so far. In [5], [7], [8] and [9]
the authors use a special concept on polynomial and Sturm–Liouville-
hypergroups. Here we give a general definition, which covers the known
special cases.
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In this paper C denotes the set of complex numbers. By a hypergroup
we mean a locally compact hypergroup. If K is a commutative hypergroup,
then CpKq denotes the locally convex topological vector space of all contin-
uous complex valued functions defined on K, equipped with the pointwise
operations and the topology of uniform convergence on compact sets. The
involution on K induces an involution on CpKq in the following manner: if

the involution on K is denoted byq, then we define qfpxq “ fpqxq for each f
in CpKq and x in K.

The dual of CpKq can be identified with McpKq, the space of all com-
pactly supported complex measures on K, and the pairing between CpKq and
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McpKq is given by the formula

xµ, fy “

ż

f dµ .

Convolution on McpKq is, as usually, defined by

µ ˚ νpxq “

ż

µpx ˚ yq dνpyq

for any µ, ν in McpKq and x in K. Convolution converts the linear space
McpKq into a commutative algebra with unit δe, e being the identity in K.

We also define convolution of measures in McpKq with arbitrary func-
tions in CpKq by the same formula

µ ˚ fpxq “

ż

fpx ˚ qyq dµpyq

for each µ in McpKq, f in CpKq and x in K. The linear operators f ÞÑ µ ˚ f
on CpKq are called convolution operators.

Translation with the element y in K is the operator mapping the func-
tion f in CpKq onto its translate τyf defined by τyfpxq “ fpx ˚ yq for any x
in K. Clearly, τy is a convolution operator, namely, it is the convolution with
the measure δ

qy. A subset of CpKq is called translation invariant, if it con-
tains all translates of its elements. A closed linear subspace of CpKq is called
a variety on K, if it is translation invariant. For each function f the smallest
variety containing f is called the variety generated by f and is denoted by
τpfq. It is the intersection of all varieties containing f .

For basic knowledge on hypergroups the reader is referred to [1], [8].

A basic function class is formed by the joint eigenfunctions of all trans-
lation operators, that is, by those nonzero continuous functions ϕ : K Ñ C
satisfying

(1) τyϕ “ mpyq ¨ ϕ

with some m : K Ñ C, that is

(2) ϕpx ˚ yq “ mpyqϕpxq

for all x, y in K. It follows

ϕpyq “ ϕpeq ¨mpyq ,

which implies ϕpeq ‰ 0, consequently, by (2), we have

(3) mpx ˚ yq “ mpxqmpyq

for all x, y in K. Nonzero continuous functions m : K Ñ C satisfying (3) for
each x, y in K are called exponentials. Clearly, every exponential generates
a one dimensional variety, and conversely, every one dimensional variety is
generated by an exponential.
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Using translations one introduces difference operators ∆y “ τy ´ τe and
higher order difference operators ∆y1,y2,...,yn “ Πn

i“1∆yi for each y1, y2 . . . , yn
in K. Obviously, ∆y1,y2,...,yn is a convolution operator, namely

∆y1,y2,...,ynf “ Πn
i“1pδqyi ´ δeq ˚ f ,

where Π is meant as a convolution product.

Difference operators, in particular, higher order difference operators are
related to another important function classes on commutative topological
groups. We intend to consider these classes on commutative hypergroups as
well. A continuous function f : K Ñ C is called a generalized polynomial, if
there is a natural number n such that

(4) ∆y1,y2,...,yn`1
f “ 0

holds for each y1, y2, . . . , yn`1 in K. In this case we say that f is of degree at
most n and the degree of f is the smallest n for which f is of degree at most n.

A continuous homomorphism of K in the additive group of complex
numbers is called an additive function. Clearly, every nonzero additive func-
tion is a generalized polynomial of degree 1.

A generalized polynomial is called simply a polynomial if it generates
a finite dimensional variety. It is known that if G is a commutative topo-
logical group, then a complex valued function on G is a polynomial if and
only if it is a polynomial of additive functions. In other words, polynomi-
als on commutative groups are exactly the elements of the complex function
algebra generated by the constants and the additive functions and they are
characterized in the class of generalized polynomials by the property gener-
ating a finite dimensional variety. Hence it seems to be reasonable to use this
property for their definition on commutative hypergroups.

We shall also use modified difference operators defined as follows: given
an exponential m, a continuous function f and an element y in K, then we
let

∆m;yfpxq “ fpx` yq ´mpyq fpxq

for each x in K. The iterates are defined for any positive integer n and for
each y1, y2, . . . , yn in K by

∆m;y1,y2,...,yn “ Πn
i“1∆m;yi .

Obviously, these operators are also convolution operators, namely

∆m;y1,y2,...,ynf “ Πn
i“1pδqyi ´mpyiq δeq ˚ f

holds. On the right hand side Π is meant as a convolution. In particular, for
m “ 1 we have ∆1;y1,y2,...,yn “ ∆y1,y2,...,yn .

Modified difference operators are related to another basic function class
on commutative topological groups. Namely, a continuous function is called
an exponential monomial, if it is the product of a polynomial and an expo-
nential. Linear combinations of exponential monomials are called exponential
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polynomials. Further, a continuous complex valued function f is called a
generalized exponential monomial, if it is the product of a generalized poly-
nomial and an exponential, and linear combinations of generalized monomials
are called generalized exponential polynomials. Unfortunately, these concepts
cannot be used in this form in the hypergroup-situation. The reason is that
pointwise multiplication of function values is in general not compatible with
the linear character of the convolution defined on hypergroups. In particular,
the pointwise product of two exponentials is not necessarily an exponential
and the product of two additive functions is in general not biadditive. Never-
theless, for general purposes it would be desirable to introduce a reasonable
concept of exponential monomial on commutative hypergroups. We made
some attempts in doing this on particular hypergroups, like polynomial and
Sturm–Liouville hypergroups (see [5], [7], [8]). The point of this paper is to
offer a general definition, which seems to work on arbitrary locally compact
commutative hypergroups and which reduces to the usual concept on com-
mutative topological groups.

Let K be a commutative hypergroup. Then the continuous function
ϕ : K Ñ C is called generalized exponential monomial, if there exists an ex-
ponential m on K and a natural number n such that

(5) ∆m;y1,y2,...,yn`1
ϕpxq “ 0

holds for each y1, y2, . . . , yn`1 in K. The smallest n with this property is
called the degree of ϕ. If (5) holds, then we say that the generalized expo-
nential monomial ϕ corresponds to the exponential m. We note that we do
not claim or require that m is unique. A generalized exponential monomial
is called simply an exponential monomial, if it generates a finite dimensional
variety. A linear combination of generalized exponential monomials, or expo-
nential monomials is called generalized exponential polynomial, or exponential
polynomial, respectively.

By our above remark, every generalized polynomial is a generalized
exponential monomial, and every polynomial is an exponential monomial
corresponding to the exponential identically 1. Every exponential is an expo-
nential monomial of degree 0 and every additive function is an exponential
polynomial of degree 1. The following theorem shows that this concept of
exponential monomials and generalized exponential monomials is compatible
with the corresponding concept in the group-case.

Theorem 1. Let K be a commutative hypergroup, which is a group. The con-
tinuous function ϕ : K Ñ C is a generalized exponential monomial in the
hypergroup-sense if and only if it is a generalized exponential monomial in
the group-sense. In particular, the continuous function ϕ : K Ñ C is an ex-
ponential monomial in the hypergroup-sense if and only if it is an exponential
monomial in the group-sense.

Proof. We write ˚ as ` in K. Suppose that ϕ : K Ñ C is continuous and
satisfies (5) with some exponential m : K Ñ C for all y1, y2, . . . , yn`1 in K.
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It is easy to check that it follows
(6)
mpx` y1` y2`¨ ¨ ¨` yn`1q∆y1,y2,...,yn`1pϕ ¨ qmqpxq “ ∆m;y1,y2,...,yn`1ϕpxq “ 0

for each x, y1, y2, . . . , yn`1 in K. As m is never zero, this implies

∆y1,y2,...,yn`1
pϕ ¨ qmqpxq “ 0

for each x, y1, y2, . . . , yn`1 in K, hence ϕ ¨ qm is a generalized polynomial and
our statement follows.

The converse statement follows similarly. Indeed, if ϕ is a generalized
exponential monomial of the form ϕ “ pm with a generalized polynomial p
and an exponential m, then the function ϕ ¨ qm is a generalized polynomial
satisfying (4), which is, by (6), equivalent to (5). The theorem is proved. ˝

As an application of this concept we prove a simple result.

Theorem 2. Let K be a commutative hypergroup and pϕnqnPN a generalized
moment function sequence. Then ϕn is an exponential monomial of degree at
most n corresponding to the exponential ϕ0 for each n.

Proof. By definition the sequence satisfies

ϕnpx ˚ yq “
n
ÿ

k“0

ϕkpxqϕn´kpyq

for each x, y in K pn “ 0, 1, . . . q. We prove the statement by induction on n
and it is obvious for n “ 0. Clearly m “ ϕ0 is an exponential. Suppose that
n ě 1 and we have proved our statement for k ď n´ 1. Now we prove it for
k “ n. Let y1, y2, . . . , yn`1 be arbitrary in K. We have

∆m;y1,y2,...,yn`1
ϕnpxq “ ∆m;y1,y2,...,yn

“

ϕnpx ˚ yn`1q ´mpyn`1qϕnpxq
‰

“

∆m;y1,y2,...,yn

”

n
ÿ

k“0

ˆ

n

k

˙

ϕkpxqϕn´kpyn`1q

ı

´mpyn`1q∆m;y1,y2,...,ynϕnpxq “

∆m;y1,y2,...,ynϕnpxq ¨mpyn`1q ´mpyn`1q∆m;y1,y2,...,yn`1ϕnpxq “ 0 ,

which proves our statement. ˝

We prove our main results, which show that this concept is a generaliza-
tion of the one has been used in [5, 7, 8, 9]. We recall that given a commutative
hypergroup K and a positive integer n the function Φ : KˆCn Ñ C is called
an exponential family (see e.g. [8]), if

1. for each x in K the function λ ÞÑ Φpx, λq is C8 on Cn;
2. for each λ in Cn the function x ÞÑ Φpx, λq is an exponential on K;
3. for each exponential m on K there is a λ in Cn for which mpxq “ Φpx, λq

holds, whenever x is in K.
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Lemma 3. Let K be a commutative hypergroup, Φ : KˆCn Ñ C an exponen-
tial family for K, N a natural number, λ a complex number and P : Cn Ñ C
a polynomial of degree N . Then the function ϕ : x ÞÑ P pBλqΦpx, λq is an
exponential monomial of degree at most N corresponding to the exponential
m : x ÞÑ Φpx, λq.

Proof. We have to show that

∆m;y1,y2,...,yN`1
ϕpxq “ 0

holds for each y1, y2, . . . , yN`1 in K. Obviously it is enough to prove the
statement for polynomials of the form P pξq “ ξα, where α is a multi-index in
Nn and ξα “ ξα1

1 ξα2
2 ¨¨ ¨ ¨¨ξαn

n . We prove by induction on |α| and the statement
is obviously true for |α| “ 0. We have for each x, y in K

(7) B
α1
1 B

α2
2 ¨ ¨ ¨ ¨ ¨ Bαn

n

`

Φpx, λq ¨ Φpy, λq
˘

“
ÿ

βďα

ˆ

α

β

˙

B
β
λΦpx, λqBα´βλ Φpy, λq “

ÿ

βăα

ˆ

α

β

˙

B
β
λΦpx, λqBα´βλ Φpy, λq ` P pBλqΦpy, λq .

With the notation l “ |α| it follows from (7)

∆m;y1,y2,...,yl`1
BαλΦpx, λq “ ∆m;y1,y2,...,yl

“

∆m;yl`1
BαλΦpx, λq

‰

“

∆m;y1,y2,...,yl

“

BαλΦpx ˚ yl`1, λq ´ B
α
λΦpyl`1, λqΦpx, λq

‰

“

∆m;y1,y2,...,yl

“

ÿ

βăα

ˆ

α

β

˙

B
β
λΦpx, λqBα´βλ Φpyl`1, λq

‰

“

ÿ

βăα

ˆ

α

β

˙

“

∆m;y1,y2,...,ylB
β
λΦpx, λq

‰

B
α´β
λ Φpyl`1, λq “ 0 ,

by assumption, as for each β ă α the function x ÞÑ B
β
λΦpx, λq is an exponen-

tial monomial of degree at most |α| ´ 1 ă l. This means that the function
x ÞÑ P pBλqΦpx, λq is a generalized exponential monomial of degree at most l
and equation (7) implies that it generates a finite dimensional variety, hence
it is actually an exponential monomial. ˝

We can formulate the following consequences.

Corollary 4. Let K be a polynomial hypergroup generated by the sequence of
polynomials pPnqnPN. Then for each complex number λ and natural number

k the functions n ÞÑ P
pkq
n pλq are exponential monomials of degree at most k

on K.

Proof. The statement follows from Theorem 3, as pn, λq ÞÑ Pnpλq is an ex-
ponential family on K, by Theorem 2.2., p. 40. in [8]. ˝

In the following statement we use the notation R0 for the set of all
nonnegative real numbers.
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Corollary 5. Let K “ pR0, Aq be a Sturm–Liouville hypergroup corresponding
to the Sturm–Liouville function A : R0 Ñ R, further for each complex number
λ let Φ : R0 ˆ CÑ C be the unique solution of the initial value problem

d2

dx2
Φpx, λq `

A1pxq

Apxq

d

dx
Φpx, λq “ λΦpx, λq for x ą 0 ,(8)

Φp0, λq “ 1 ,(9)

d

dx
Φp0, λq “ 0 .(10)

Then for every complex number λ and for each natural number k the functions

x ÞÑ dk

dλk Φpx, λq are exponential monomials of degree at most k on K.

Proof. The statement follows from Theorem 3, as px, λq ÞÑ Φpx, λq is an
exponential family on K, by Theorem 4.2., p. 62. in [8]. ˝
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