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Abstract

The problem of a type I superconducting disk in a spatially inhomogeneous magnetic field is considered. The aim
of the investigations undertaken here is to evaluate the effects of the spatial inhomogeneity of the parallel component of
the applied magnetic field on the nature of the superconducting macleation of a short cyvlinder. Full numerical solutions
of the linearized Ginzburg- Landau equation for the order parameter, taking into account only the parallel component
of the field, are presented in the case of a solid disk; free-standing and in a metallic matrix. In the case of a mesoscopic
system, only the limiting form of the critical temperature is obtained. The temperature-field (£ curves are charac-
terized by flux-entry points at each of which the azimuthal guantum mumber decreases by unity. The quasi-period of the
flux-entry points increases in f* with the increasing strength of the spatial inhomogeneity of the applied field. The in-
creased effect of coating the superconductor with a suitable normal metal leads to the well known suppression of the
critical temperature as well as smoothing out of flux entries. It is predicted that the wiping out of surface nucleation is
effected with relative ease when the applied magnetic field is uniform than when it posseses a degree of spatial inho-
mogeneity.

@ 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The surface nucleation field, Hs = 1.69H.,
where H, 15 the bulk critical field, appears at a
planar surface of a semi-infinite type 11 supercon-
ductor in a uniform parallel apphed magnetic field
[1.2]. This has also been found to be true in a thick
type Il superconducting film [3] and a solid cylin-
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der [4.3] subjected to a uniform parallel magnetic
field. The nature of the superconducting state just
below Hs depends on the dimensionless ratio of
the specimen thickness to the Gingburg-Landan
(G-L) coherence length £(T). At a critcal value of
the ratio, &/&(T), where & 15 the thickness of the
film, for example, it becomes possible for a vortex
line to fit into the film. Distinet flux-entry points,
which are quantized in integral multiples of the
flux quantum, characterize the temperature-field
curve of a type 11 superconducting solid cylinder in
a uniform parallel applied magnetic field [4,3].
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Even more pronounced are the flux-entry points,
known as Little-Parks oscillations, in the temper-
ature-field curve of a very thin-walled supercon-
ducting hollow cylinder [6-8]. As in the numerous
investigations [3-8] for the calculation of Hs, it
is sufficient to employ the G-L equation for the
order parameter in its linearized form. This ap-
proximation is based on the key feature of the
Landau theory of phase transitions; that near a
phase transition the order parameter is very small
[9] Spatial mhomogeneities of superconducting
phases can arise especially of thick specimen even
in the case of a uniform applied magnetc field [10)
and these should easily be accessible in micro-
magnetization techmgues [11]. A magnete fiekd
with a profile such as to counter spatial variations
of the superconducting phases should be invalu-
able in the development of theoretical models. In
particular, uniform nucleation of a thick specimen
would mean that the system studied can be de-
scribed in terms of a constamt ground state wave
function. This should, overall, ease complexities in
caleulations where otherwise it would be necessary
to employ the full G-L equation for the order
parameter, for example, as in the analysis of a
superconducting cylinder as a glant vortex [12].
The modelling of a spatally mhomogeneous
magnetic field which has the tendency of counter-
ing spatial wvariations of the superconducting
phases s in essence the motivation for the inves-
tigations undertaken here.

This paper 1s a review of the caleulation of the
nucleation field of a type Il superconducting cyl-
inder. The main aim of this study 1s to take mio
account the spatial inhomogeneity of the parallel
applied magnete field. This review 1s based on the
linearized G-L equation for the order parameter,
which provides a refined approximate quantitative
description of the nature of nucleation especially
of filamentary specimen under the mfluence of
weak fields [10].

The lay out of this paper is as follows: the
formalism for the reevaluation of the parallel
nucleation field 15 outlined n Section 2. The dis-
cussion of a free-standing very short supercon-
ducting solid cylinder 15 given in Section 3,
followed by a briel account of the effect of normal-
metal cladding on the critical temperature in Sec-

tion 4. The limiting form of the critical tempera-
ture of a thin-walled annular disk 1s discussed in
Section 5 and finally, the conclusions are presented
in Section 6.

2. Formalism

For the determination of the nucleation field of
a type Il superconductor, it s sufficient to employ
the linearized G-L equation for the order para-
meter, ., given by [9]:

ﬁ{—:ﬁ\? — 2eA)Y +ay =0, (1

where A 18 the vector potential of the applied
magnetic field, p is the mass of a particle of charge
2e and 2= a,(T — T, 15 the G-L parameter in
which Ty is the bulk critical temperature. The
general expression for the quantum mechanical
current density 15 given by:

" 2
J = —(reh/p) (Vi —YVPT) — (4 () b "A
(2)
In the case of a free-standing superconductor or
a superconductor-insulator interface, the geome-

try of the superconductor enters the eigenvalue
problem via the boundary condition [13],

B (=AY — 2eA)) = 0, (3)

where m1s a umt vector normal o the miterface.

3. Freestanding disk

Consider a type Il superconducting short cyl-
inder of length L. and radius B in a static applied
magnetic field with the radial B, and the axial B,
components given by

B 1
B,= j—: (|:| — ;L,) and B.= 8, + B In(p/p,),

(4)

where By, B; and p,, are constants measured in the
obvious appropriate units. Although the above
form of the field satisfies all the magnetostatic
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equations, it is nevertheless unrealistic owing o iis
divergent nature at the origin. From a theoretical
point of view, this singularity can be smoothed out
by introducing a tiny core at the origin, or betier,
consider nstead an annular disk. With the singu-
larity removed, the profile of the applied magnetic
field somewhat mimics that just near the ends of a
magnetic dipole. Perhaps an even closer fit to the
profile of the applied magnetic field can be ob-
tained with the core of the electromagnet fash-
ioned to have a conical end lace. Mote that for a
concave-like core, the magnetic field lines will be
concentrated near the curvature of the disk. Con-
versely, the concentration of the field lines will be
in the inner regions of the disk if the core is con-
vex-like. It is anticipated, however, that for a very
short eylinder surface nucleation effects due B, will
be negligibly small, more so that B, = 0 at the end
surfaces of the disk anyway. Now, nucleation of
superconductivity due to B 1s in two parts: at B,
the nucleation field perpendicular o the end faces
of the disk and at B, the critical field parallel to
the curvature of the disk. Despite its variation with
the radial distance, B, 1s the trivial result of a type
11 superconducting thin film subjected 1o a per-
pendicular magnetic field. 1t 15 well known that
nucleation of superconductivity occurs at a much
lower temperature for the perpendicular than for
the same value of the parallel applied magnetic
field. Further, an increase of 8; should give rise to
an expanding normal phase of the inner region of
the end faces; the expansion centered at p= 0.
Arguably, nucleation of superconductivity should
be increasingly localized near the edges of the end
faces as the applied magnetic field 1s increased. In
view of these considerations, the problem of the
disk subjected to a magnetic field of the form given
by Eq. (4) essentially reduces to that of a cylinder
in a parallel magnetic field B., that i, the z-com-
ponent of the actual applied magnetic field. Now,
the logarithmic term in Eq. (4) may be represented
by an approximate fitting function of the form:
Inx == c; + czx, where ¢ and ¢; are constants
which nonetheless depend on the range of the
values of p used. These coefficients may simply be
read off the computer using software packages, for
example, such as grapher. Upon a renormalization
of the constants By, B;, ¢ and ¢, the actual par-

allel component of the magnetic field may further
be approximated by the following form:

Blp) = B,lv+ap /RY), (5)

where B, i1s the background value upon which
the spatially varying part of the applied magnetic
field 1 superimposed. The specific profile of the
applied magnetic field across the cylinder radius
s determined by a particular choice of the con-
stant vartables; v and . Although the magnetic
field immediately above does not satsfy all the
magnetostatic equations, 1t 1s nevertheless a very
good approximation of the form that does; the
field given by Eq. (4). For reasons stated earler, it
suffices to consider only the axial component of
the field for the determination of the required
critical field. Taken only with one component in
the azimuthal direction, the vector potential asso-
ciated with the approximate form of the magnetic
field above may be writlen as

1 1 :
A‘? = ;B“(VP +;I’Ij’}3fR2)_ |:|.‘TI2|

In view of the symmetry of the problem posed
here, the solution of Eq. (1) 1s sought in the form:

i = Cpeexplime)y, m=0=x1,£2. ., (7

where Cyy 15 a constant, m the azimuthal gquantum
number and y s the radial part of the total wave
function, taken in the transformation:

x =" exp(—L/2)F. (8)

The dimensionless variable [ s defined by
[ = p?/2d, in which @, = (h/2eB,)"" is the cy-
clotron radius corresponding to the background
magnetic field B,. The function # 15 found to
satisly the lollowing linear second-order differen-
tial equation:

LF" b= F — la+ h(0))F =0, (9)

where the primes on # denote differentiation of
the function with respect to the argument {. The
parameters g and b are:

1 &
A

and the function A{L) is given by

a=§+§|m|+§mv— b= |m +1 (1)



12 M. Masale ! Physica C 397 (2003} 20-37

1 1 meo 1 v 1 &°

W) =7 | -1 4o (e 2+ 2 T

&) 4[ T3 ] 3% Tar
(11)

The dimensionless vartables e and f;, are defined
by the following relationships:

e= p|alR /20 and  f, = nBR* /29, = R jda’,.
(12)
Mote that for v= 1 and o =0, Eq. (9) reduces

to Kummer's equation for the confluent hyper-
geometric function, that is, # = M{a. b, [). This is
in fact the special case of a cylinder in a uniform
applied magnetic field, say B,. Eq. (9) was solved
by the series method, obtaining the funciion # as
well as its first derivative #' each in terms of a
four-term recursion relationship for the coeffi-
cients of {0 Algorithms were developed for the
evaluations of the functions # and M based on
their series representations. The confidence level
regarding the trustworthy of the numerical evalu-
ations of # was pivoled on the two hmiting forms
that: #F ~ M as [ — 0and #F — M as ¢ — 0, for
all £. Conversion of the series 15 fast and almost
guaranteed for @ < 0 particularly for small [ al-
though it has to be said that a higher number of
terms are required to achieve in the case of #.
Equipped with subroutines for the evaluations of
F and F', generating the field-temperature curves
i5 then a matter of standard routine: first fix f,
then search for the negative fluxoid number m
which gives the lowest value of &. Only the mini-
mum value of & has physical significance since it is
the one that corresponds to the required critical
field.

The application of the boundary condition at
the surface of a free-standing disk, which in this
case simplifies to %= 0 for p= R, leads to the
following eigenvalue equation:

(lm| = 270 (v,o,a,b, 20,0+ 41,5 (v.o,a, b, 21,
= . (13)

For a disk of thickness such that R < £(T),
there can hardly be any phase changes of W, even
in the case when the applied magnetic field varies
spatially. The derivatives of W vanish and the small

o imiting form of & obtained from integrating Eq.
(1) across the radius of the disk 1s found as:

1 1 2 1 1 "
Fn=ifﬂz+|i1’+iﬁj|mﬁ,+|iilfz+§m+ﬁﬁz o

(14)

The simple result above 15 helpful mainly as a
guide to the full numerical solutions of Eq. (9).
Mow, the defimition of f, given by Eq. (12) 1s es-
sentially the magnetic flux of a uniform magnetic
field B, penetrating the cross-sectional area of the
cylinder per twice the flux quantum. Indeed £, 15 a
convenient parameter with which to represent a
uniform magnetic field. However, a complication
arises in the case of a spatally inhomogeneous
applied magnetic field. While the short eylinder as
a whole responds to the fux through it, the value
of the field at the curved surface may not neces-
sarily correspond 1o Hs, for example, when v+
o = 0. Two useful representations of the nhomo-
geneous field are as follows:

fo=falv+a), (15)

which s defined in terms of the value of the mag-
netic field at the surface of the cylinder, namely
B, = B,(v+ws). This representation 18 more ap-
propriate for the caleulation of A but has no
bearing on the nature of the superconducting
phases of the interior regions of the cylinder. The
second representation, analogous Lo the definition

of f, given by Eq. (12) s defined by

that is, 15 in terms of the actual flux through the
axial area S of the cylinder. This representation
prescribes nucleation of a cylinder as a whole and
is arguably more suitable for very fine supercon-
ducting filaments. As noted earlier, spatial varia-
tions of the magnetic field in a cylinder of very
small radius are hardly sigmficant. 1118 convenient,
especially in connection with the first of these
representations of the field given by Eq. (135), o
impose the constraint that v+ = 1.0 and such
that v = (. First, this restriction on the values of v
and o avoids complicated profiles of the applied
field across the cylinder thickness, for example, a
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change of sign of the applied field within the cyl-
inder radius. Second, the results obtained here
then directly relate to the special case of a cylinder
in a uniform magnetic field.

Fig. 1 shows the temperature—field curves in the
two representations mentoned above for some few
values of v or ¢ = 1 —v. To be more specific, Fig
laisa plot of g versus fi(= f)and Fig. 1bthat of &
versus f. Each curve in either of the two plots
corresponds to a different value of v, at say
f=fi=350, as follows: Fig. la; v= 1.0 for the
lowest (thick) curve, increasing in steps of Av =02
up to v = 2.0, for the highest curve. The stacking
up of the curves at f = 5.0 in Fig. 1b is in the re-
verse order of the increasing values of v given
above. The thick curve in each plot is the result for
the special case of a uniform applied magnetic
field. Just like in the case of a superconducting
solid cylinder in a uniform magnetic field [4,5),
each curve consists of joint segments each corre-
sponding to unit stepwise decrease of m as the field
increases. The striking feature of Fig. la is the

fanning-out of the &£ curves for the different
values of v, giving the false impression of the
suppression of the critical temperature as v in-
creases. As such, the fanning-out of the curves for
the different values of v is a consequence of un-
derestimating the flux penetrating the axial area of
the cylinder, in fact by a factor y =3[v+1]. It is
interesting to note that the & # 0 curves in the
representation of Fig. 1b are merely displaced
relative to the universal temperature-field curve
for the spectal case of a uniform applied magnetic
field. In Fig. 1b, as v is increased, the cusps of the
non-zero o curves shift shightly towards the origin,
essentially along the universal temperature—field
curve for uniform applied magnetic field. A case
can therefore be made for the representation of
Fig. 1b as the one that depicts the true universal
temperature-field curve of a superconductor in a
non-uniform appled magnetic fiekd.

The nature of the superconducting phase across
the cylinder thickness may be inferred from the
spatial variations of the radial wave functions or

F

Fig. 1. {a) The & versus £ curves of a type I superconducting disk in a spatially mhomogeneous axial magnetic field, Each curve
corresponds to a diffsrent value of v, ranging from 1.0 and increasing in steps of Av = 0.2, in the direction of the arrow, up to 2.0, The
thick lowest curve is the result for the spedal case of a uniform applied magnetic dd corresponding to v = 1.0, (k) The universal
critical field—temperature (8-} curves of type I superconducting disk for exactly the same values of v as for Fig. 1a. Here the fizld is
representad in terms of the actual Qux through the disk, Mote also that here these curves stack-up, at say = 5.0, according to the

decreasing values of v used.
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the current density across the thickness of the
cylinder. The explicit form of the current density is

found to be

2= —(iml + [2v + L)), (17)
i

where x = p/R and Jog = 2eh/(uR).

The variations of the v # 0 radial wave func-
tiens are very similar to those in the investigations
by Constantinou et al. |5] and are only shown here
for the sake of completeness. Fig. 2 compares the
radial wave functions corresponding to v = 2.0,
the solid curves, with those obtained in the case of
a uniform magnetic field, v = 1.0, shown as the
broken lines. The corresponding [ f,m) values, at
say, p/R = 0.5 are: (0.5,0) for the topmost pair of
curves, (1.5,-1) for the middle pair and (2.5,-3)
for the lowest pair of curves. For convenience, the
wave functions have been normalized by their re-
spective values for p=R. For small f, as con-
firmed by the curves corresponding o f = 0.3,

Fig. 2. The varations of some few radial wave lunctions across
the radins of the disk. The dashed corves with dots are for the
special case of a uniform magnetic feld such that v = 1.0, The
corresponding results for a spatially inhomogeneous applied
magnetic fizld correspondmg o v = 2.0 are depicted as the sehd
lines, The ( F, m) values for each corresponding pair of curves,
indicated there are: (0.5,0) for the topmost pair, {1.5,-1) for the
middle par and {2.5,-3) for the lowest pair,

there can hardly be any spatial vartations of the
wave function. This implies that nucleation of su-
perconductivity s uniform in filamentary wires
despite the spatial variations of the applied mag-
netic field. As f increases, however, phase changes
of the wave function become significant. For ex-
ample, the wave flunction corresponding to f = 2.5
is very small for regions in the interior of the cyl-
inder, assummg a maximum value at the surface.
This implies the presence of a superconducting
sheath at the surface while the bulk of a thick
cylinder is in the normal phase.

Fig. 3 compares the current densities across the
cylinder radius corresponding exactly to the wave
functions depicted in Fig 2. The corresponding
i(fom) values are: (0.5,0) for the lowest pair of
curves, (1.5,=1) for the middle pair and (2.5,-3)
for the highest pair of curves. The build-up of the
current densities near the cylinder-surface for the
two types of the magnetic field profiles considered
confirms the presence of surface nucleation.
However, note the dipping at the surface of the
curves for the case of an mhomogeneous magnetic
field, which 1s more pronounced for large values of
S It should be mentioned that in contrast to the
spatial varations of the wave Minctions, a decrease

i@
Jaf Jos
5
@ e
a.8 1.8

Fig. 3, The distribution of the quantum mechanical current
density across the radius of the dsk correspondmg exactly 1o
the wave functions shown in Fig, 2,
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of the current density is indicative of the onset of
superconductivity. The dipping of J at p=R
therefore implies a pseudo return to the super-
conducting phase there. This 15 consistent with the
decrease of the applied magnetic field as p ( < R)
INCreases.

4. Disk in a metallic matrix

Surface nucleation 15 suppressed if a supercon-
ductor 15 coated with a suitable normal conductor.
This s accompanted by the systematic depression
of the order parameter at the surface of a super-
conductor. The extent of the depression 1s such
that the slope of the wave function at the surface
can be extrapolated to the value, /8, where the
doping-controlled parameter 6 15 the extrapolation
length. In the case of a superconducting solid
cylinder in a metallic matrix, the condition of a
zero-gradient at the boundary is replaced by [13]:

ﬁ+£={]

18
dp 4 ()

The application of the boundary condition
above leads to the following eigenvalue equation:

[Im| = 2f, + R/8)F (v, 6,a,b,2f,)
+4f, F (v, 0,a,b,2f,) = 0. (19)

The effects of normal-metal cladding on the
critical temperature of superconductors with cy-
lindrical symmetry has been discussed extensively
in & number of publications [4,58,10]. A brief
discussion of normal-metal cladding s given,
highlighting only the features brought about by
the inhomogeneity of the applied magnetic field.

Fig. 4 shows the effect of metallic cladding on
the variation of the critical temperature (g) with
the field (/) corresponding to v= 2.0. The in-
creasing suppression of the critical temperature T,
for zero magnetic field corresponds to the in-
creasing values of the ratio R/d as follows: 0.0 for
the lowest curve, increasing steps of 2.0 up to 100
for the highest curve. Of course, the zero-field
variation of £ with R /6 is in exact agreement with
the results reported previously [8]. For large values
of f, the degree of the suppression of T, is signif-

&

o

RS = (0203100) T

=
P
[
2t
m

f

Fig. 4. The universal aritical fisld—temperature curves of disk in
a nonsuperconducting metallic matrix, The intercepls increase
according to the values of the extrapolation length such 876 =
0.0 for the lowest curve, increasing in steps of AR /8] =2.0up
o 876 = 10,0 for the highest curve,

icantly higher here than in the case of a uniform
applied magnetic field. As in the case of a cylinder
in a uniform magnetic field, the number of flux-
entry points of the e—f curve decreases with the
increase of R/4 which signifies the wiping out of
surface nucleation. In this case, complete sup-
pression of surface nucleation, when &~ f and
corresponding to m = 0, oceurs at higher values of
R/d than in the case of the cylinder in a uniform
applied magnetic field. This s what might be an-
ticipated should the superconducting sheath in this
case be thicker than one for a cylinder in a uniform
magnetic field.

5. Freestanding mesoscope

The system considered here is a free-standing
very short and thin-walled hollow cylinder ofinner
and outer radii B; and R., respectively. The ap-
plied inhomogeneous magnetic field 15 agam as-
sumed to have the form given by Eq. (3). As stated
earlier, there can hardly be spatial variations of the
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order parameter across a superconductor of thick-
ness much smaller than the G-L coherence length.
Further, for such small thicknesses, monotonic
spatial varations of the applied inhomogeneous
magnetic field are oo weak to induce phase
changes of the order parameter. Following Masale
et al. [B], the limiting form of the critical temper-
ature, obtained on integrating the G-L in y across
the shell thickness is given by:

2 = g P+ 4 (200)
where
p=v+{l—-n1 —n"e (20b)
and
2 1
a=5(1 -7t =)+ [L +77]ve
s (1= =), (20¢)

in which 5 = Rj/R3. The numeral subscript on &
and f, indicates that the definitions of the respec-
tive variables are in terms of R;. The inhomoge-
neous field is represented in terms of the actual flux
penctrating the thickness of the shell according to:

fa = fall —n)(v+ 31 +n]s). (21)

Mote that unlike in the investigations very
closely related to one undertaken here, the repre-
sentation of the field given by Eq. (21) excludes the
so-called missing flux;

, = 7BR (v + o), (22)

this being the flux through the hole.

Fig. 5 compares the g~ curves of a thin-wal-
led short hollow cylinder of thickness such that
# =035 for two specific profiles of the magnetic
field. The dashed curve 15 for the case of a shell n a
uniform magnetic field, that is, for v = 1.0, The
smooth solid curve is the result for the shell in an
inhomogeneous such that v = 2.0, Each of the two
curves 1s characterized by strong oscillations of the
critical temperature in its variation with the field.
This quasi-periodic variation, known as Little
Parks oscillation, is superimposed on a slow
overall decrease of T.. Each period corresponds
to an mcrease by unity in the fluxoid number

2.2
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Fig. 5. The & versus {5 curves of a short and thin-walled type 11

superconducting hollow cylinder of thickness such that y = 0.5,
The dashed curveis for the case of a shell in a uniform magnetic
fizld. The smooth solid curve 15 the result for the shell in an
inhomogensous magnetic fiskl such that v = 2.0,

enclosed within the shell-thickness. Just like in
the earlier discussion of a short solid cylinder,
the mhomogeneity of the applied magnetic field
manifests itself in the relative shifting of flux en-
tries to smaller values of g and . Again, the
displacement of the uniform-field universal curve
towards smaller values of g and f3 15 a conse-
quence of underestimating the flux penetrating the
shell-thickness. It s worth mentioning that over-
estimating the flux through the shell, as in the
representation of the field as f, leads to a dra-
matic “upward” shift of the flux-entry points as
the field is increased. This s marked by a drastic
reduction in the number of flux-entry pomis on the
universal temperature—field curve, consistent with
the suppression of spatial variations of the super-
conducting phases across the specimen.

6. Conclusions

The linearized G-L equation for the order pa-
rameter was employed in the description of the
Meitssner effect of a type Il superconducting short
cylinder in a spatially inhomogeneous apphed
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magnetic field. Overall, the applied magnetic field
consisted of a part with a parabolic vanation in
the radial distance, this being superimposed on a
constant background value. Two sets of plots of
the critical temperature—field curves of a disk were
generated in which the field was represented either
in terms of the flux corresponding to the back-
ground value of the magnetic field; Fig. 1a; or in
terms of the actual flux penetrating the axial area
of the disk; Fig. 1b. Just like in the case of a cyl-
inder in a uniform parallel applied magnetic field,
the temperature—field curves are characterized by a
succession of distinet flux-entry points at each of
which m decreases by unity. Cusps, each corre-
sponding o a particular m are much more pro-
nounced in the case of a very thin-walled annular
disk. These appear as a series ol quasi-periodic
segments joined end to end and are referred to as
Little-Parks oscillations. In the first of these rep-
resentations, the e—f; curves for the different
“strengths™ (|g]) of the parabolic part of the field
fan-cut as the background value of the applied
magnetic field s increased. Increasing |o] essen-
tially resulted in an anticlockwise rotation of the
unform-field uwmversal temperature-field curve
about the origin. This false impression of the de-
pression of the critical temperature s a conse-
quence of underestimating the flux through the
cylinder. In the second of these representations, as
in Fig. 1b, increasing || leads merely to a dis-
placement of the uniform-field universal &f curve
towards the origin. This displacement, accompa-
nied by a shight apparent clockwise rotation, of the
e~ curve s seen in the decrease of the flux-entry
points within the given range of the values of
used. It was noted that even i the case of the
spatially imhomogeneous applied magnetic field,
the superconducting phase nucleates uniformly
across a disk of small radius. A superconducting
sheath persists at the surface while the inner region
of wide pill-box is in the normal state. The current

densities corresponding to & # 0, particularly for
large f, posses maxima near the surface of the
cylinder in their variations with the radial distance.
The dipping of the current densities, which arises
as a consequence of the mhomogeneity of the ap-
plied magnetic field, s believed to indicate an in-
creased stability of the superconducting phase
there, at least in comparison with the case of a
cylinder in a uniform magnetic field. Finally, me-
tallic cladding was found o show the well known
effects of the suppression of the critical tempera-
ture as well as surface nucleation. The suppression
of surface nucleation s seen in the wiping out of
flux-entry points, which are seen Lo progress Lo
higher values of ¢ and f as R/d is increased.
Complete suppression of surface nucleation is
achieved at much lower values of B /8 in the case of
the cyhnder n a uniform magnetic field than i the
corresponding case of the spatially inhomogeneous
magnetic field.
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