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ABSTRACT 

 

Ramotswa wellfield located in South Eastern Botswana is undergoing rapid urbanization with a 

significant population growth rate between 2-3% per annum. This along with unreliable rainfall 

pattern, has escalated the demand on fresh water supplies, hence pressure on the well field and 

supplies from the Gaborone Dam. Use of historical groundwater level records from observation 

boreholes provides valuable source of information for understanding the hydrological dynamics 

due to different stresses within the aquifer system and helps in anticipating future challenges that 

are likely to occur due to these stresses. In this study, an attempt has been made to model the 

fluctuation of monthly groundwater table data in Ramotswa wellfield both in space and time using 

geostatistical and stochastic models. By conducting time series modelling, monthly groundwater 

level data collected from 2002 to 2012 at 13 different wells were subjected to intervention analysis. 

This was done to detect any changes in the data due to natural and manmade causes. Cumulative 

Summation (CUSUM) results revealed that groundwater level data had undergone intervention at 

all the boreholes. Change which was confirmed by T-Statistic test at 5% significance level was 

identified at end of year 2007 and beginning of year 2008.Trend analysis was conducted using 

Mann Kendall test for data after time of intervention. The results revealed that trend was not 

statistically significant in most boreholes. For stochastic modelling, data at each borehole were 

subjected to two approaches namely Autoregressive Integrated Moving Average (ARIMA) and 

Thomas Fiering models to make three months forecasts. The most suitable model was chosen. It 

was found that in almost all cases ARIMA models gave the least error estimates in forecasting and 

hence was recommended for forecasting.  

 

For spatial interpolation of groundwater levels at unknown locations within the well field, 

geostatistical modelling approach was used for two scenarios; winter (July 2005) and wet season 

(i.e. after February 2006 floods). Based on the results of 3 semi-variogram models to the observed 

data, exponential model was found to provide the best fit for July 2005 scenario while for February 

2006 it was the spherical model. The choice of the two models was supported by reasonable values 

of r2; which were 0.7 for July 2005 and 0.9 for February 2006. The nugget- to -sill ratios of 0.1 (< 

0.25) for July 2005 scenario groundwater levels have strong spatial dependence while the ratio 

was 0.29 for February 2006 scenario indicating moderate spatial dependence. After interpolation 

by ordinary kriging, the results of the groundwater level at unknown were cross validated with 
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known values at 5 boreholes within the radius of influence and the percentage errors were found 

to be low. The results indicated that groundwater levels are affected by topography and presence 

of water bodies and demonstrated the usefulness of stochastic modelling for temporal and 

geostatistics in spatial modelling of groundwater table in the study area, hence in water resources 

planning and management. 

 

Keywords: Stochastic models, ARIMA, Thomas-Fiering model, Geostatistics, Ordinary Kriging, 

groundwater level  
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CHAPTER 1-INTRODUCTION 

1.1 BACKGROUND AND RATIONALE 

 

Water is one of the most important natural resources which supports all forms of life in our planet. 

Reliable access to adequate clean fresh water is now regarded as a universal human right (United 

Nations Committee on Economic, Social and Cultural Rights, 2003). The Millennium 

Development Goals (MDG’s) recognizes the need for reliable supply of clean water and have set 

a target of reducing the number of people not having access to clean water and sanitary facilities 

to half by year 2015 (UNDP, 2006). 

It has been estimated that by 2025, 5 million of the world’s population will be living in water 

stressed countries and most of these countries are in Africa and South East Asia (Arnell et al., 

1999). This water scarcity would be a direct effect of a combination of many factors such as 

increase in population, the ever increasing demand for water in this industrialization era as well as 

changes in climate. Climate change has over the years been linked to a number of various changes 

in different components of the hydrological system. This change is expected to result in an increase 

in temperature and an intensification of the hydrologic cycle. This leads to frequent occurrence of 

extreme events such as tropical typhoons, droughts, floods which cause catastrophic damage to 

human beings and other living organisms. According to simulations results of global hydro 

climatic variables conducted using mid-range emission scenario (IS92A), mean air temperature, 

precipitation, evaporation and runoff  are likely to increase by 2.3℃, 5.2%, 5.2% and 7.3% 

respectively by 2050 (Wetherald et al.,2002). A lot of precipitation and evapotranspiration from 

the intensified cycle however would not be equally distributed in space. According to Arnell 

(1999), it is expected that increase in runoff will be experienced in high latitude, equatorial and 

tropical areas and will decrease in mid latitude and subtropical regions. 

Groundwater is a very important source of water and forms part of the hydrologic cycle. 

Groundwater resources represent 15% of Africa’s renewable water resources, and because of its 

hidden nature it has been undervalued and unutilized (UN Economic Commission for African 

Climate Change Policy Centre, 2011). Even though it has been second to surface water for a very 

long time in terms of use by general public and water sector managers (Villholth et al., 2007), it 

plays an important role in maintaining important surface water systems and the ecosystem. 
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Groundwater level is controlled by a balance between storage, recharge, and discharge (Taylor et 

al., 2001). This balance is affected by physical factors such as permeability, porosity and sizes of 

rocks and sediments. The balance is also affected by climatic conditions, groundwater abstraction 

rates as well as land use/land cover changes. Groundwater monitoring needs to be conducted over 

long periods of time to enable proper development, management and protection of water resources. 

Water use data such as pumping rates, volumes of water pumped can enhance the interpretation of 

observed trends in water level and changes in storage capacities associated with withdrawals over 

time.  

Failure of groundwater supply system is almost always due to failure of infrastructure or 

unsustainable and uncontrollable pumping rates over a short period of time (Department of Water 

Affairs, South Africa, 2010). The adjustment of groundwater storage in aquifers due to the factors 

already mentioned above can be easily described from measurements of water table. There is a 

massive gap in the level of available information and documentation of the state of groundwater 

in both developed and undeveloped countries which hinders groundwater monitoring and planning 

(Villholth et al., 2007). 

Developed countries like the United States of America are experiencing challenges of groundwater 

monitoring due to data unavailability in certain locations. It is for this reason that the US 

Geological Survey has called for setting up of a nationwide program for a systematic and 

comprehensive record of water levels at observation wells (Taylor et al., 2000). The Minnesota 

Groundwater Monitoring Network found the importance of groundwater level monitoring by 

recommending the expansion of their monitoring network of wells from 750 to 7000 (Minnesota 

Groundwater level monitoring, 2011). This expansion was necessary because there were large 

unmonitored areas. The expanded network would become a long term investment to fully 

understand and manage groundwater in Minnesota. 

In the SADC region, there have been some attempts to conduct regional groundwater monitoring 

for sustainable development through Groundwater Management Program (GMP) after recognizing 

the increase in demand for groundwater. This program was mainly focused on assessment, 

exploitation and protection with emphasis on groundwater resource management and coping 

strategies to deal with drought. It was not addressing the inadequacy and inhomogeneity of 

regional groundwater data. According to their study, a survey conducted in 2002 on the regional 
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groundwater analysis situation for Southern Africa found that very few countries in the region 

conduct groundwater monitoring despite groundwater being such an important resource for rural 

communities. One of the recommendations made was the setting up of a comprehensive regional 

groundwater database in which there would be free dissemination of information to member states. 

The importance of groundwater monitoring was highlighted in the South African Groundwater 

strategy for 2010 which stated that lack of monitoring data makes it challenging to make an 

accurate estimate of availability of groundwater as well as its abstraction rates. South Africa has a 

national network of monitoring boreholes and a National Groundwater Database. The network is 

still deemed inadequate and unreliable for water resources assessment (Department of Water 

Affairs, 2010). In an attempt to monitor groundwater, Water Resource Council of South Africa 

had a project of developing Groundwater Management Framework which included many aspects 

of groundwater management at municipal level (Riemann et al., 2012). The aim was to improve 

management of groundwater by equipping water authorities with necessary tools and capacity to 

conduct groundwater data collection and monitoring. 

There is a clear indication of the need to conduct a comprehensive groundwater monitoring for our 

groundwater resources. Part of groundwater monitoring plan is monitoring of groundwater table 

data. Research on groundwater level fluctuation with time as a way of understanding and 

quantifying this depleting resource would go a long way in providing effective and sustainable 

solutions in the ever changing climatic condition. Due to the depletion of groundwater resources 

in many areas especially the semi-arid part of Africa, hydrological modelling would serve as an 

important tool for planning and management of groundwater especially during dry seasons. 

Groundwater plans and policies can be developed on the reliable basis of a countrywide assessment 

of trends and future estimates of groundwater. 

1.2 PROBLEM STATEMENT  

 

Botswana, like other Southern African countries located in the semi-arid region, is water stressed, 

with its fresh water resource ranging between 1000 to 1700 m3 per person per year (UNEP, 1999). 

Due its accelerated economic and population growth in recent years, the problem of water scarcity 

is expected to continue in the near future with the ever changing climate having an adverse effect 

on water resources. With surface water development being limited by many factors such as lack 

of dam sites, low rainfalls and high evaporation rates, groundwater is a very critical resource 
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required to meet the daily needs including domestic, agricultural and industrial use. It is estimated 

that Botswana’s groundwater potential stands at 1.7× 109 m3/year (Kgathi, 1999) and it is capable 

of supplying 80% of Botswana’s population (Department of Water Affairs, Botswana, 2006). 

Groundwater which is the main source of water accounts for 66% of portable water supply 

(Majelantle, 2009) mainly to rural areas while the rest is being accounted for by surface water for 

major towns and cities. There is a serious concern regarding the rate of abstraction as compared to 

recharge capacities of the aquifer. The annual rate of abstraction is estimated to be 76 ×103 m3 and 

it is expected to increase (Du Plessis et al., 2003). The implication of this is that the resource is 

likely to last for a few decades, hence careful monitoring as well as knowledge is required for its 

sustainable use. 

Botswana recently has been experiencing frequent droughts which have been affecting different 

sectors and continue to frustrate Government’s efforts of diversifying the economy. The most 

hardly hit areas are the Western and the Southern parts. In the Southern region, the main sources 

of water for urban areas is surface water. The capital city Gaborone located in the South East 

District has been one of the most affected areas. It has over the years been experiencing rapid 

urbanization with an influx of people from remote areas of Botswana and other neighbouring 

countries. It is the central focus of the country’s economy and hosts important governmental 

structures like government enclave, ministerial headquarters, government departments, embassies, 

and many other commercial, industrial and business centres. 

With the city’s main source of water, the Gaborone Dam now completely dry as shown on Figure 

1.1, it is unable to meet the ever increasing water demand from these different sectors of the 

economy.  
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Fig 1.1: The drying Gaborone Dam, the main supply of potable water to Gaborone and 

surrounding areas. 

The dam is also a source of portable water to other major villages in its surrounding such as 

Mogoditshane, Tlokweng, Ramotswa, Gabane and Mochudi which are also experiencing 

unprecedented population growth due to their proximity to the capital city. Other nearby dams 

(e.g. Nywane and Bokaa Dams) have also been drying up due to low rainfalls and increases in 

demand for water in the rapidly growing towns. This has triggered rationing of water by Water 

Utilities Corporation which has resulted in less water available mainly for domestic and industrial 

use. The drying up of dams due to low rainfall and increase in demand has demonstrated that 

surface water resources are becoming more and more unreliable. Even though plans are in place 

to augment supply through the North South Carrier (NSC) 2 pipeline from Dikgatlhong Dam, the 

project is still at implementation stage and because of that, water scarcity will continue to persist 

in the Southern Region. There is therefore a need to intensify efforts of considering groundwater 

as a supplementary source to minimize the current overreliance on surface water sources especially 

in urban areas.  
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Ramotswa Wellfield located in South–Eastern part of Botswana is one of the most productive 

wellfields in the country. It has in the past been used as emergency supply during drought periods 

as far back as the 1970’s (Geotechnical Consulting Engineers, 2000). As part of the Gaborone 

Emergency Water Supply Scheme, boreholes were connected to the Lobatse-Gaborone pipeline. 

Following the completion of Gaborone dam in 1984, supply of water from Ramotswa to Gaborone 

was discontinued. Some of the boreholes were decommissioned while the remaining ones were 

used solely for the supply of Ramotswa village (Geotechnical Consulting Engineers, 2000). The 

wellfield was completely abandoned in 1996 due to high concentrations of nitrates from seepage 

of pit latrines  

However to avert the recurring drought situation, efforts are being made by Water Utilities 

Corporation (WUC) to utilize groundwater from the wellfield as a mitigation strategy. There is 

already some abstraction being done in some of the production boreholes whereby groundwater is 

being blended with surface water from NSC in an effort to address the current water crisis. In 

addition to that, WUC plans to construct a reverse osmosis treatment plant to treat groundwater 

from the wellfield. According to the Corporation, plans are at an advanced stage to construct the 

plant and the project is expected to cost approximately P50 million. 

With the current depletion of surface water resources in the area and the plans to fully utilize 

groundwater resources from Ramotswa Wellfield, a lot of attention has been focused on the nitrate 

concentrations in the water. However, it is also important to monitor the quantity of groundwater 

in the wellfield especially considering the ever increasing demand of water and the amount of 

investment that is being proposed for the treatment plant. According to the Minnesota 

Groundwater level monitoring report (2011), groundwater level measurement is currently the only 

reliable to tool to measure changes in quantity of groundwater. 

Modelling and forecasting of groundwater levels can provide vital information on how the aquifer 

storage is changing with time. This information can be useful in planning and management of 

groundwater at the Ramotswa wellfield. No attempt has been done to model the fluctuation of 

groundwater level at this wellfield even though it is of paramount importance as a source of water 

to Ramotswa village and the surrounding areas. An attempt was therefore made through this study 

to model the spatial and temporal fluctuation of groundwater levels in the wellfield.  
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1.3 STUDY AREA  

1.3.1 Location 

Ramotswa village is located in the South Eastern part of Botswana, about 35 km south of nation’s 

capital Gaborone. Because of its proximity to the capital city it has experienced significant 

population increase of about 21% between 1991 and 2011 due to migration of people from the city 

and surrounding areas (Kholoma, 2011). Ramotswa wellfield is located approximately 25 km 

upstream of Gaborone dam. It covers an area of 29 km2 of which part of it is within the village 

(Geotechnical Consulting Engineers, 2000).  

 

Fig 1.2 Location of the wellfield (Google Earth, Google 2015) 

 

 

 

Road linking Boatle and 

Ramotswa  

Notwane River  

Taung River  
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1.3.2 Climate 

The climatic conditions of the study area are typical of a semi-arid climate, an area closer to the 

desert with no maritime influence because of the country’s geographical location. The area 

experiences a wet season between October and March, and a dry season between April and August. 

Kholoma (2011) reported mean annual maximum temperature to be 28.9 ̊C and mean annual 

minimum temperature to be 12.9 ̊C. The mean annual rainfall ranges between 475 mm and 525 

mm. The rainfall events in this type of climate are highly intensive and have a short duration. High 

levels of evaporation occurs mostly in summer with the daily peak between 1300 hrs and 

1600hrs.This is supported by evidence of high  average daily pan evaporation of  approximately 

5.5 mm per day as reported by Department of Water Affairs (DWA) (2003). 

1.3.3 Topography 

The terrain is generally a hilly terrain, with landforms such as Sepitwane, and Rankepa hills. The 

altitude ranges from 1012 m to 1189 m above sea level (Kholoma, 2011).The area is drained by 

two ephemeral rivers namely; Notwane, and Taung Rivers. Notwane which is the main river while 

the other two are tributaries located in the western part of the area. The wellfield is located along 

this main stream which slopes gently in the northern direction with an overall hydraulic gradient 

of 1:300 (Staudt, 2003). The vegetation cover is predominantly shrubs and tree savanna but has 

been affected by human interventions such as cutting down of trees and overgrazing. This has 

resulted in erosion due to high intensity storms during rainy seasons. 

 

1.3.4 Land Use and Development 

Ramotswa which hosts the administrative headquarters of the South East district has undergone 

rapid development over the years. This includes provision of educational, social, industrial, 

medical and utility services making it highly attractive for migrants from areas within its vicinity. 

Industries such as steel factories, meat processing, and flour production can be found in the village. 

Agriculture still remains an important activity for sustaining the livelihoods of the residents. 

Sorghum and maize are the main crops while livestock keeping is mainly cattle, sheep and goats. 

Higher stocking in some areas has resulted in overgrazing and eventually land degradation due to 

soil erosion. 

 



9 
 

1.3.5 Hydrogeology 

As reported by Staudt (2003), the area consist of three lithological supergroups namely; Otse 

Waterberg, Transvaal and Ventersdorp. Otse Waterberg covers the south western part, while 

Transvaal supergroups which are intensively faulted with deep normal faults covers the middle 

and southern part of the study area. Lobatse Ventersdorp which are the oldest in the area covers 

the middle and the northern part. 

There are two aquifers in the study area namely; Ramotswa Dolomite and Lephala formation and 

these aquifers are considered to be hydraulically connected (Geotechnical Consulting Engineers, 

2000).  The Dolomite aquifer has two different karstic zones; the upper and the deeper zone. The 

upper zone which has a variable thickness of 20 to 50 m recharges from river and infiltration. The 

deeper zone has a thickness between 25 to 50 m. Dolomite have high transmissivity and storativity 

due to local karstification. For the study area within the Dolomite aquifer, high yielding wells are 

located along the major linear karst while low yield ones are located in the rock. It is this fracturing 

and intersection with minor side valleys in the East-West direction that produces favourable 

permeability conditions. Lephala formation is similar to Dolomite one but without karstification. 

It is found in the Southern and North Eastern part of Ramotswa. It consist of two fissured zones 

which are separated by a less fissured zone. The thickness of the upper zone is 30-40 m while that 

of lower zone is 30 m. Yield of boreholes in the Lephala formation depends on their proximity to 

the river, intersection of fissured zones and the extent of secondary infills (Staudt, 2003). 

 

 

Fig 1.3: Map showing the two aquifers at the study area (Rangani et al., 2002) 
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1.4 OVERALL OBJECTIVE:  

The main objective of this study is to use stochastic and geostatistical methods to model the 

temporal and spatial variation of monthly groundwater levels in Ramotswa wellfield. 

1.4.1 Specific Objectives:  

i. To investigate the homogeneity in the groundwater level data. 

ii. To develop and forecast monthly groundwater levels using appropriate stochastic models 

iii. To compare the forecasts from the chosen stochastic models and recommend the 

appropriate one for use in forecasting groundwater levels in the wellfield. 

iv. To develop appropriate geostatistical techniques for spatial interpolation of groundwater 

levels in the wellfield during wet and dry season which can be used for determination of 

groundwater levels at unmonitored areas. 

1.5 JUSTIFICATION OF STUDY: 

The South Eastern part of Botswana has been experiencing a high rate of urbanization and 

industrialization. This is indicated by a rapid increase in population in the Gaborone and the 

surrounding areas. Due to the aridity of the region caused by high rates of evaporation and low 

rainfall, pressure has been exerted on the limited surface water sources to an extent of drying up. 

Because of the criticality of water for socio-economic development, inadequate supply of water 

hampers the chances of achievement of the country’s vision 2016 pillars and some of the 

Millennium Development Goals (MDG’s). In this regard, groundwater in the Ramotswa wellfield 

is a valuable resource that needs to be carefully monitored and utilized for sustainable 

supplementary supply of water in the district. However, for the resource to be sustainable, 

knowledge on the status of groundwater resource is of paramount importance to water resources 

managers to ensure adequate supply for present and future generations. It is for this reason that 

this study is undertaken in order to have a better understanding of what is likely to happen in the 

near future with regards to water storage in the wellfield aquifer so that appropriate mitigation 

strategies could be implemented. 
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1.6 LIMITATIONS 

In this study, an attempt is being made to make use of available time series data to model and 

forecast groundwater levels at various observation boreholes. This could also be done through 

modelling of the physical processes involved. However physical modelling of the entire processes 

will involve measurement of hydrogeological variables for the entire aquifer which would be 

expensive and time-consuming.  

Another limitation of the study is in terms of water quality. High concentrations of nitrates in the 

wellfield has been a subject of many discussions after the closure of the wellfield in 1996. Because 

of lack of adequate nitrate monitoring data and other water quality variables that need to be 

monitored for water to be considered safe for drinking, the study will only focus on the quantity 

aspect. The areas mentioned above which are not covered would provide an opportunity for further 

research in the wellfield. 

1.7 LAYOUY OF THE DISSERTATION 

The following is an outline of the contents of the dissertation; 

Chapter 1 deals with the general introduction which consists of background and rationale, 

problem statement, study objectives and justification, study limitations as well as a brief 

description of the study area. Chapter 2 comprises of the review of relevant literature on time 

series forecasting and geostatistical analysis with an emphasis on their hydrological application. 

These studies are being discussed in relation to the main objective of this dissertation. Chapter 3 

describes the methods recommended for addressing the main objective and how they will be 

applied. The 3 main methods described are ARIMA, Thomas-Fiering and geostatistical methods. 

Chapter 4 describes the time series hydrographs of groundwater levels at various observation 

boreholes. Results and discussions of trend and intervention analysis are also presented in this 

chapter. Chapter 5 covers presentation of results and discussions for both stochastic and 

geostatistical analysis. Chapter 6 summarizes, concludes and makes recommendations for further 

research 
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CHAPTER 2-LITERATURE REVIEW 

2.1 INTRODUCTION 

As persistent droughts becomes more frequent and the demand for water continues to increase 

especially in semi-arid regions, the need for more efficient models and forecasting techniques of 

groundwater availability has become increasingly important. This literature review covers some 

of the most important and relevant work conducted by various researchers in an attempt to address 

the main objective of the study. These include trend and intervention analysis to ascertain the 

homogeneity of the observed series, and forecasting methods used in hydrology. The last part of 

the review focuses on stochastic models (ARIMA and Thomas-Fiering model) and geostatistical 

modelling. 

2.2 INTERVENTION ANALYSIS 

Before use of a data driven model like time series models for hydrological forecasting, it is of great 

interest and importance to understand the characteristics of the data. This can be done by subjecting 

the data to intervention analysis. Intervention here refers to a statistical approach used to analyse 

the effect of natural or manmade change in a time series (Hipel et al., 1978). Through this method, 

the actual change in the data can be statistically determined. After a point of intervention has been 

determined, it can be decided whether to choose the whole data for modelling and forecasting or 

part of the data. Cumulative Summation (CUSUM) technique by Woodwars and Gold Smith 

(1964) provides a graphical procedure for detecting intervention in a time series data. However, 

Hipel et al., (1978) suggested CUSUM as only an identification tool for estimating the time of 

intervention, therefore not statistically describing intervention effects. Kampata et al., (2008) used 

CUSUM technique to investigate the possibility of intervention in rainfall data from upper 

Zambezi basin. The step change analysis method was used to confirm any change in the 

homogeneity of data since CUSUM only identifies change graphically. Kenabatho et al., (2012) 

used CUSUM to investigate the suspected point of intervention using Botswana’s climatic data. 

T-statistic method was used for confirmation of intervention using two samples (i.e. before and 

after the suspected point of intervention). Parida et al., (2008) analysed rainfall time series using 

intervention method to check whether the rainfall series came from the same population. CUSUM 

technique was once again used to detect a suspected point of intervention which was confirmed by 

T-statistic method. Based on literature review on intervention analysis, it was therefore important 
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to test whether the groundwater level time series in the Ramotswa wellfield have been subjected 

to any intervention before using the series for forecasting. 

2.3 TREND ANALYSIS 

Trend is a tendency for successive values to be increasing or decreasing over time (Haan, 2002). 

It is one of the statistical analysis techniques that need to be carried out for almost all water 

resources studies involving use of hydrological time series data. Results of trend analysis are 

important in management of water resources and helpful in forecasting patterns of future 

hydrological events such as floods and droughts. Trend analysis approaches can be parametric or 

non-parametric. According to Machiwal et al., (2012), parametric approach is usually used by 

researchers in the time domain such as economics who make certain assumptions about the nature 

of the data. Parametric approach is a very powerful technique but requires data to be independent 

and normally distributed (Fathian et al., 2014). On the other hand, non-parametric approach is 

more widely applicable in hydrology than parametric approach since hydrological data often have 

missing segments and not normally distributed. 

Moalafhi et al., (2012) used Mann Kendall test to analyse rainfall and temperature data from four 

meteorological stations in Botswana. They found out that rainfall was decreasing while 

temperature was showing an increasing trend. In both variables, the trend was not statistically 

significant. In order to estimate trend in hydroclimatical variables which affected flow into the 

Urmia Lake in Iran, Mann Kendall statistical test was one of the non-parametric tests used by 

Fathian et al., (2014). Their findings revealed that there was a significant increase in temperature 

throughout the basin and 75 % of the monitored rainfall stations were not showing any trend. 

Kampata et al., (2008) used Mann Kendall test to conduct trend analysis of rainfall in the 

headstreams of the Zambezi river basin. They concluded that even though the results were showing 

downward trends in rainfall at the five monitoring stations, the trend was not significant. In order 

to address some of the objectives stated above, a non-parametric approach was used to conduct 

trend analysis on the groundwater levels for Ramotswa wellfield. As a widely used method for 

checking the existence of linear trends by various studies in literature, Mann Kendall test was 

recommended for the study. 
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2.4 FORECASTING METHODS 

Use of accurate models in hydrology is of fundamental importance for long term prediction of 

future events in order to make informed decisions regarding sustainable utilization of water 

resources. Some of the common applications of modelling and forecasting in operational 

hydrology include optimal reservoir operation, drought management, environmental protection, 

operation of water utilities, sustainable water resources development. It is for this reason that the 

main objective of this study is aimed at forecasting monthly groundwater levels in the Ramotswa 

wellfield using stochastic models. 

Hydrological modelling and forecasting has been a subject of interest and has received tremendous 

attention from various researchers. Nayak et al., (2006) stated that hydrological models can be 

categorized into empirical time series models and physically descriptive modelling. Empirical 

modelling is done based on the collected data (i.e. data driven) while physical modelling uses the 

laws of physics to describe the physical processes involved. Empirical time series models have 

been used for hydrological applications in studies such as the one conducted by Knotters et al., 

(1997) in which the relationship between water table depth and excess precipitation was 

established. The advantage of empirical time series model is that only data on the input and output 

variable are required for calibration while its downfall being the fact that it cannot be used for 

forecasting when the dynamic behaviour of the hydrologic system changes with time (Bierkens, 

1998). On the other hand physical models require enormous data, that is generally difficult or 

expensive to source making it challenging to apply in developing countries where the resources 

are limited (Nayak et al., 2006). 

Linear regression analysis is a statistical tool to analyse data, estimate model parameters and make 

forecasts. The statistical association between two variables is determined by drawing a line of best 

fit using least square method technique. Regression can be expanded into one or more independent 

variables in which it is referred to as multiple linear regression (Guerard, 2013). Multiple linear 

regression models can be used to simulate the association between the explanatory and the 

response variables by fitting a linear equation to observed data (Markridakis et al., 2008). These 

models have been used in hydrological applications e.g.  Shao et al., (2002), Hodgson, (1978) 

because they are easy to use, very flexible in inclusion of any number of independent variables, 

and easy interpretation of relationship between parameters (Sahoo et al., 2014). However the 
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disadvantage in these models is that they assume linearity of variables but the relationship between 

hydrological variables may be non- linear. 

ARIMA models have been applied by many researchers in modelling and forecasting of hydrologic 

data. Most of the hydrological time series are non-stationary due to trend and seasonal effects and 

this implies that the mean and variance of the series changes with time. ARIMA is often preferred 

for modelling and forecasting using such kind of data due to their flexibility and inclusion of both 

autoregressive and moving average terms. They have been found to be highly capable of describing 

the time related changes and forecasting of hydrological variables (Kuruc et al., 2004). However 

just like the linear regression model these models assume that the data has a linear relationship and 

cannot be used to address the nonlinearity which is often encountered in hydrology. Another 

disadvantage is that the model is complex, requires an experienced modeller to produce 

satisfactory results and also requires a lot of data to build a reasonable model (Bails et al., 1993). 

Some studies e.g. Nayak et al.,(2006) have recommended the use of models which account for 

non-linearity which is a prime characteristic of issues relating to atmospheric and hydrological 

science since the models discussed above are only limited to linear assumption. This has led to the 

emergence of Artificial Neural Network approach (ANN) as an important tool for forecasting in 

many areas of science and engineering. Neural Networks have remarkable ability to derive 

meaning from imprecise data and can be used to extract patterns that are too complex to be noticed 

by humans or other computer techniques (Moalafhi et al., 2014). However even with their ability 

to overcome non-linearity in the data, they have two main disadvantages; their computational time 

and overfitting. ANN approach usually require a trial and error approach for parameter estimation 

and one is never sure whether an optimal model has been obtained (Haijie, 2010). Over 

memorizing (overfitting) can happen when the model is over trained with training data (when there 

are too many hidden neurons) leading to loss of generalizing to forecast future data. 

Even though these models vary from simple to more sophisticated, it can be seen from the above 

discussion that none of the model is perfect for forecasting .Therefore given these alternatives, a 

choice needs to be made so that appropriate forecasting model can be selected (Makridakis et 

al.,1982). The selection of an appropriate model for a particular problem depends on many factors 

such as the number of series to be modelled, required accuracy, modelling costs, ease of use, ease 

of interpretation of the results (Adhikary et al., 2012). For instance, ARIMA models are linear and 
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parametric, i.e. data is required to be stationary, sampled at equal time intervals and have a 

significant degree of serial dependence (Toth et al., 2000). It has been found through the 

Makridakis forecasting competition in 1982 that complex or highly sophisticated models did not 

in general outperform the simple ones therefore the complexity of the model does not guarantee 

the most accurate and reliable forecast (Weatherford et al.,2003). 

In an attempt to fulfil the main objectives of this study, the methods discussed above have been 

considered. Time series modelling have been considered better option for areas where nothing but 

hydrological time series data is available (Adhikary et al., 2012). It is well appreciated that 

hydrogeological parameters and domain boundary conditions are often not available for physical 

modelling as in the case of Ramotswa wellfield. Most of these parameters are very difficult to 

obtain because of several natural and anthropogenic factors (Kim et al, 2005). Since time series 

models are popular tools for medium range forecasting and generating synthetic data, they were 

recommended to be applied for the study area. The two time series models that were applied for 

the study area are ARIMA and Thomas Fiering Models. Although this study mainly covers time 

series models for forecasting groundwater levels, geostatistical techniques were utilized to model 

the spatial distribution of groundwater level in the wellfield. The discussions in the next sections 

focus on studies in literature which utilized ARIMA, T-F as well as geostatistical modelling for 

solving various hydrological problems with more emphasis on groundwater. 

2.4.1 ARIMA models 

Extensive research work has been conducted in the area of time series analysis of hydrological 

variables. This involves use of historical observations taken at uniform intervals to develop 

stochastic models with an aim of understanding the past hydrological series as well as attempting 

to forecast the likelihood of occurrence of future events. In order to achieve this, a statistical 

description of a population is conducted based on a limited number of samples (Salas et al., 1993). 

ARIMA models developed by Box and Jenkins (1976) have been extensively used to simulate and 

forecast hydrological variables and processes such as stream flow, precipitation, water quality data 

etc.  

In one of the studies conducted in Bangladesh, Adhikary et al., (2012) used ARIMA to model the 

fluctuation of groundwater table in an unconfined aquifer. They used weekly water level 

monitoring data from 5 observation wells from 1999 to 2006. In their approach, they used linear 
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regression and periodogram to examine the trend and periodic behaviour of the groundwater series 

respectively. The appropriate model was selected from the other candidate models after verifying 

its performance using error indices. The outcome of the results showed a decline in groundwater 

level trend and cyclic annual periodicity. The study was successfully completed after generating 

reasonable forecast from 2005 to 2006. 

The performance of stochastic models was tested in a study conducted in Kashan aquifer in Iran 

(Mirzavand et al., 2014). They used time series analysis to select the optimum model for water 

table prediction using observation data from 36 wells. In order to achieve this, they used water 

level data from 1990 to 2004 for the modelling part, and then used data from 2005 to 2010 for 

model prediction. From a list of five candidate models (AR,MA,ARMA,ARIMA and SARIMA) 

with 11 different structures, it was decided based on model evaluation using Akaike Information 

Criterion (AIC) and correlation coefficients that AR(2) was the most accurate model for 

forecasting of water table in Kashan aquifer. 

Other studies have applied stochastic modelling techniques for time series analysis and prediction 

of water quality data for proper river basin management (Durdu et al., 2009). In that study, ARIMA 

modelling approach was used for prediction of boron concentration in Buyuk Menderes River, 

western Turkey using boron concentration data from 1996 to 2004. The study was meant to address 

issues of river water pollution due to high concentrations of boron which limited its use for 

irrigation purposes by developing a time series model for forecasting of boron pollution level. In 

order to check whether the data can be subjected to standard time series analysis, the data was 

subjected to trend and intervention analysis which were both found to be insignificant. After 

comparison of the observed and the predicted boron concentrations between 2002 and 2004 using 

Z test, it was observed that there was no significant difference between the mean and variance of 

the observed and predicted concentrations. This confirmed indeed confirmed that ARIMA models 

can be safely used for forecasting of boron concentrations.  

Another study of ARIMA modelling of water quality parameters was applied using data from two 

inlets and an outlet of Latian Dam, in Tehran using 24 years of monthly data from 1981 to 2005 

(Asadollahfardi et al., 2012). In addition to modelling of water quality parameters time series, they 

used the developed models to predict the variation of future water quality at the sampled locations. 

The outcome of their study showed that some water quality parameters showed seasonal behaviour 
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while others were non-seasonal. The trend of TDS, Mg2+, Na+ and SO4
2- revealed a maximum 

amount in April and a minimum in September. The models showed consistency between observed 

and synthetic monthly predictions hence could be useful for water quality management in the inlet 

and outlet of the dam. 

ARIMA models have been widely used for modelling and forecasting of stream flow by various 

researchers. Saleh et al., (2009) applied these models to study inflow into the Haditha Dam using 

monthly inflow data from 1999 to 2008. After testing the model’s goodness of fit using Port 

Manteau Lack of fit and Residual Auto Correlation Function (RACF) test, a 3 year monthly flow 

forecast was determined. The outcome of the study revealed that the inflow into the dam was 

successfully fitted by ARIMA (0,1,2) × (0,1,1)12 which gave rise to the least errors compared to 

the other candidate model. 

  

The adequacy of ARIMA family models was once again demonstrated in the study conducted by 

Mohan et al., (1994) using monthly flows into the Bhadra Reservoir system in India. The authors 

used 25 years of data for model development and 27 years for forecasting of inflow in the monsoon 

climatic conditions. They found that the inflows into the reservoir can be adequately modelled by 

ARIMA (2, 0, 0) × (0, 1, 1)12, and this was the model which was subsequently adopted for 

forecasting of 27 years of monthly inflows. They advocated for long historical data for building of 

the ARIMA model to avoid frequent modification of the model parameters. In order to demonstrate 

the flexibility of their developed model, the model was modified and applied in a different location 

where flows were unknown to evaluate real-time reservoir operating policies and found it to be 

effective. The application of the ARIMA model not only in optimal operational policies but also 

in optimal cropping patterns was also highlighted. 

Mujumdar et al., (1990) used time series modelling to investigate the best suited models for 

representation of for three South Indian rivers; Cauvery, Malaprabha and Hemavathy. Before the 

series were used for model development, standardization technique was used for removal of 

periodicities inherent in the process. Most of the authors in this literature review used Akaike 

Information Criterion (AIC) as a decision rule for model selection. However, Mujumdar et al., 

(1990) highlighted downfalls of using AIC which include not only the fact that it does not minimize 

the average value of any criterion function but it is also not consistent. Instead, they recommended 
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the use of maximum likelihood criterion for simulation purposes and mean square error criterion 

(MSE) also known as the prediction approach for forecasting. 

2.4.2 Thomas Fiering model 

Thomas Fiering model has been widely used for synthetic generation of hydrological data. This 

mathematical model has been used by a number of researchers mostly for sequential generation of 

stream flows in which flow at any time is treated as a linear function of flow in the preceding time 

step. The model which can be used for weekly, monthly, seasonal or annual observations does not 

require data to be normally distributed. 

Thomas Fiering model was used by Boughto et al., (1968) for synthetic generation of stream flow 

data in New Zealand for gauging stations with more than 20 years of data. Although at that time 

their paper reported work in progress than a completed study, they did highlight possible errors 

that could occur when short records are used to estimate statistical parameters such as mean, 

standard deviation, correlation coefficient which form the basis of the T-F model. In an attempt to 

model the flow of Khassa Chi river in Kirkuk, Iraq between 1941 and 2001, Cheleng et al., (2011) 

used T-F model to simulate streamflow Synthetic data generated were very much close to the 

original data. In the synthetic generation of monthly and annual rainfall data at the Goztepe 

meteorological station, Thomas-Fiering model was one of the models reviewed by Unal et al., 

(2004). They found out that the wavelength approach is capable of preserving the statistical 

characteristics of the observed series just like the classical approaches in hydrological data 

generation schemes.  

2.4.3 Comparison of ARIMA and Thomas- Fiering models 

Most of the literature reviewed above used only one individual stochastic model (either the 

ARIMA or Thomas-Fiering Model) to forecast the behaviour of a hydrological variable and were 

not compared with other models to investigate their performance. Consideration of other models 

would be helpful in advising on the best model to use in order to describe the hydrological 

behaviour of a series and make informed decisions from reliable forecasts. However some 

researchers have attempted to compare different forecasting approaches with an aim of evaluating 

their forecasting capabilities. In a study conducted by Kurunc, et al., (2004), a best fit model was 

selected between ARIMA and T-F approaches using water quality and stream flow data for 

Yesilirmak River at Durucasu monitoring station, Turkey from 1984 to 1996. After conducting 
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their analysis, it was concluded that Thomas Fiering model performed slightly better than ARIMA 

model and hence recommended for forecasting. 

Similarly another study was conducted by Ahmad et al., (2001) for Gange River water quality 

forecasting. However unlike Kurunc et al., (2004) where only two approaches were considered, 

the authors added a deseasonalised ARIMA model to the ARIMA and T-F approach in their model 

performance evaluation. For their choice of the most suitable ARIMA model, Akaike Information 

Criterion was used. The overall conclusion was that in terms of overall error estimates, the 

deseasonalised approach with the Fourier series technique was recommended as the most suitable 

model for forecasting of water quality parameters. 

 

2.5 GEOSTATISTICAL ANALYSIS 

Geostatistical modelling technique has been widely used in hydrology to investigate the spatial 

variation of observed hydrological variables. This technique involves interpolation of hydrological 

variables to produce a prediction surface based on measurements at known locations. Sahoo et al., 

(2014) used geostatistical techniques for investigation of the spatial variation of groundwater 

depths in Eastern Odisha, India using data from 24 observation wells. The investigation was 

performed using the pre and post-moon soon data from 1997 to 2011. From the five semi-

variogram models that they considered in their model development, they recommended the 

exponential model to be the best for spatial interpolation using ordinary kriging interpolation for 

their study area. It was concluded based on the goodness of fit criteria used which are; Root Mean 

Square error (RMSE), coefficient of determination (R2) and Mean Error (ME) for model 

evaluation. 

 

In a study conducted to investigate the spatial and temporal behaviour of groundwater level in the 

coastal aquifers of Tamilnadu, Mini et al., (2014) used geostatistical modelling. They used data 

for the pre and post monsoon period of 1999 and 2008. The circular model was found to be the 

best model for fitting data in unconfined aquifer for all cases except for post monsoon 1999. The 

spherical model fitted well during 1999 while Gaussian fitted best in year 1998 for semi-confined 

aquifer. However, unlike Sahoo et al., (2004), they were not only able to determine the best fit 

model, but also the nugget/sill ratio to determine the extent of spatial dependence. The overall 
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result revealed that groundwater level has very strong spatial dependence, and groundwater level 

was below the mean sea level which resulted in the existence of reverse hydraulic gradient. The 

study hence concluded that the hydraulic gradient was the main reason behind the intrusion of sea 

water into the aquifers.  

 

Ahmadi et al., (2006) made an attempt to use geostatistics to model the spatial and temporal 

structure of groundwater level fluctuation using piezometric well data for Darab plain, Iran from 

1993 to 2004. After performing cross correlation to determine the most suitable model to construct 

the semi-variogram, they found that the spherical model provided the best fit and hence it was used 

for performing ordinary kriging. The outcome of the study was that groundwater level showed 

strong spatial correlation due to low nugget effects and the model underestimated the groundwater 

level drop by 3 %. This is an acceptable error therefore supports the unbiasedness hypothesis of 

kriging. The study was therefore able to prove the capability of geostatistics as a reliable tool for 

revealing the structure of the groundwater fluctuation in space and time. Taany et al., (2007) used 

geostatistical modelling to analyse the spatial and temporal variation of groundwater level 

fluctuations in the Amman –Zarqabasin, Jordan using monthly observation well data from 2001 to 

2005. They found that the gaussian model provided the best fit for constructing the semi-variogram 

and this was confirmed by the cross-validation method. After performing interpolation by kriging 

method, it was found that the interpolation error was less than 5% and the strong spatial 

dependence was confirmed by the low nugget to sill ratio (<0.25). 

 

In a study conducted by Manchiwal et al., (2012), an integrated geostatistics and GIS techniques 

were used to model the spatial and temporal variations of groundwater levels using monthly 

ground level data from May 2006 to June 2009 in the semi-arid hard rock basin of western India. 

They followed a standard procedure of fitting four geostatistical models to the experimental semi-

variogram. Based on two goodness of fit criteria (RMSE and correlation coefficient), the 

exponential model was selected as the best among the four models. In order to identify critical 

areas suffering from a decline in groundwater levels, spatial interpolation by ordinary kriging was 

performed in a GIS environment to estimate groundwater elevations at unknown points. A nugget-

to-sill ratio of less than 0.25 suggested that groundwater levels have strong spatial dependence, 



22 
 

hence geostatistics and GIS were recommended as reliable tools for sustainable management of 

groundwater resources. 

 

2.6 Summary 

 

In general, stochastic models and geostatistical techniques are very useful in modelling both the 

spatial and temporal variation of hydrological variables. It is therefore reasonable to apply them 

for groundwater forecasting and sustainable management of water resources in the Ramotswa 

wellfield. 
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CHAPTER 3-METHODOLOGY 

3.1 INTRODUCTION 

In the previous chapter (i.e. chapter 2), the methods recommended for fulfilling the objectives 

outlined in chapter 1 are; ARIMA, Thomas-Fiering and Geostatistical methods. This chapter 

describes those methods and how they were applied starting with two data analysis tools namely 

intervention and trend analysis. All the proposed models require a single variable, i.e. monthly 

ground water level series from observation boreholes. This data is available from the Department 

of Water Affairs sampled from 2002 to 2012. 

3.2 INTERVENTION ANALYSIS 

As it has already been described above, intervention analysis is a flexible tool for rigorously 

ascertaining the effects of change upon the mean of a series. As specified under section (2.2) of 

the literature review, groundwater table data from the observation boreholes in the Ramotswa 

wellfield were investigated for the possibility of intervention either due to man-made or natural 

factors. The recommended method was Cumulative Summation (CUSUM) technique which was 

used to determine the suspected point of intervention. The results were then verified by student t- 

test. Both methods are described below; 

3.2.1 CUSUM Test 

This method was developed by Litchfield and Wilcoxon (1949) and it is used to determine whether 

the means of the two parts before and after the unknown point of change are different 

(Shanmugasundram, 2012). From a time series data of n observations (𝑥1𝑥2, 𝑥3 ...𝑥𝑛), representing 

monthly groundwater levels from a borehole over n months, the CUSUM value yi at any time i is 

given by; 

𝑦𝑖 = (𝑥𝑖 + 𝑥𝑖−1 + 𝑥𝑖−2 + + + ⋯ + 𝑥𝑛) − 𝑛𝑖 × x                                                                  (1)                                                               

Where; yi = CUSUM value at time i 

             𝑛𝑖= Time scale position of the datum 𝑥𝑖  

             n = Sample Size  
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CUSUM values are plotted against time and then graphically investigated for any suspected point 

of intervention. When there is no intervention in the series, there will be oscillation of the CUSUM 

value about the horizontal axis. Any drastic rise or decline of the plot would indicate possible 

intervention from the time of observation of such a change (Parida et al., 2008). At the suspected 

point of intervention, the series is split into two parts for further analysis using the split sample 

test. 

3.2.2 Student’s t-test 

The t- statistic is given by; 

          

𝑇 =
|𝑥2−𝑥1|

√𝑆1
2

𝑛1
+

𝑆2
2

𝑛2
                                                                                              (2)                                                                                                                                                              

 

Where  𝑥1 and 𝑥2 are means and 𝑆1
2
 and 𝑆2

2
  are variances of split samples 1 and 2 respectively. 

n1 and n2 are sample sizes such that n1+n2=N. The T-Statistic is tested against the critical values 

of 1.96 and -1.96 at 5 % significance level. If the value of T lies within that range, then it shows 

that the intervention is insignificance hence the series belong to the same population. Otherwise 

there is intervention, i.e. data is non-homogenous. 

3.3 Trend Analysis 

Groundwater level time series were subjected to a non-parametric Mann-Kendall test. This test 

was originally used by Mann (1945) and the test statistic distribution was derived by Kendall 

(1975) (Burn et al., 2001). As it has already been explained in section (2.3), non- parametric test 

does not make any assumption about the underlying distribution of the data (Hipel, 1994). It is 

therefore advantageous to use it on hydrological data since one does not need to know the type of 

the distribution. 

Mann-Kendall S is given by; 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘)

𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1

 



25 
 

                                                                                                                                                    (3)

                                                                            

                                                                                                                                                            

Whereby; 

𝑥𝑗 − 𝑥𝑘 = {

1  𝑖𝑓 𝑥𝑗 − 𝑥𝑘 >  0  

0 𝑖𝑓 𝑥𝑗 − 𝑥𝑘 =  0 

−1 𝑖𝑓 𝑥𝑗 − 𝑥𝑘 <  0 

 

The variance of S is given by; 

𝜎𝑠
2 =

𝑛(𝑛−1)(2𝑛+5)−∑ 𝑡𝑗 (𝑡𝑗−1)(2𝑡𝑗+5)
𝑞
𝑗=1



Where; n is the sample size, q is the number of tied groups in the data set, tj is the number of data 

points in the jth tied group. 

 

The test statistic 𝑍𝑠 is computed using the value of 𝑠 and 𝜎𝑠
2 as follows;    

 

𝑍𝑠 = { 

𝑆−1

𝜎
 𝑖𝑓 𝑠 > 0

0     𝑖𝑓 𝑠 = 0
𝑆+1

𝜎
 𝑖𝑓 𝑠 < 0

                                                                                                                                                       (5)                                                          

When the value of Z is positive, it indicates an increasing trend, while a negative value indicates a 

decreasing trend. A null hypothesis Ho that there is no trend in the data is either rejected or accepted 

depending on whether Zs is less than or more than the critical value from the normal distribution 

table at 5% significance level (Kampata et al., 2008). 

3.4 STOCHASTIC MODELLING 

A time series is a set of observations of a phenomena done in a chronological order (Hipel, 1994). 

The intrinsic feature of time series is that the observations are dependent and it is the dependency 

of these of observations that is of interest and practical significance (Box and Jenkins, 1976). 

Therefore a lot of emphasis is placed on the order of the observations for reliable forecasting. If a 

phenomena that is time dependent can be predicted precisely using laws of physics, then 

deterministic models can be applied. However, most natural phenomena in hydrology like 

streamflow, precipitation cannot be predicted with absolute certainty. Randomness/uncertainty in 
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observations of a natural variable can be accounted for by use of stochastic models. Because these 

observations evolve in time according to a probabilistic structure, a mathematical description of 

this structure is referred to as a stochastic process (Hipel, 1994). 

3.4.1 AR and ARMA models 

In this study, the intention was to use ARIMA models to forecast monthly groundwater levels in 

the Ramotswa wellfield. The model used in this case was a univariate model, i.e. only one variable 

is used to forecast future values. However, it is important to describe a brief historical background 

of evolution of these models. Early attempts in time series studies were generally characterized by 

a deterministic world until the works of Yule (1927) who postulated that every time series can be 

regarded as a realization of a stochastic process (Gooijer et al., 2006). Based on this idea, 

Autoregressive Model (AR) was introduced given by; 

𝑧𝑡 = 𝜙1𝑧𝑡−1 + 𝜙2𝑧𝑡−2 + ⋯ + 𝜙𝑝𝑧𝑡−𝑝 + 𝑎𝑡                                                                                    (6) 

In this relationship, an observed value 𝑧𝑡  is an output which is dependent on the previous 

observations namely 𝑧𝑡−1 and  𝑧𝑡−2 up to 𝑧𝑡−𝑝 and the random component 𝑎𝑡. This random 

component accounts for the error in the model and it’s assumed to be normally 

distributed.  Autoregressive model parameters are 𝜙1, 𝜙2  up to 𝜙𝑝. “P” indicates the order of the 

model (persistency, i.e. the extent of serial dependency). It indicates up to what lag do the previous 

observations have an influence on the current observations and hence enable determination of 

values in the next time step. 

A number of time series models were subsequently developed. In supplementing AR models, 

Slusky (1937) came up with a concept of moving average model (MA) given by; 

𝑧𝑡 = 𝑎𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑝𝜀𝑡−𝑞  
                                                                                   (7)

 

𝜃  Represents the moving average parameter in the MA model. 

Wold (1938) combined the two theories to form Autoregressive Moving Average (ARMA) models 

and stated that they could be applied  for all stationary  time series as long as the order of the AR 

and that of the MA can be specified appropriately (Makridakis et al.,1995 ). The ARMA models 

are given by; 
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𝑧𝑡 = 𝜙1𝑧𝑡−1 + 𝜙2𝑧𝑡−2 + ⋯ + 𝜙𝑝𝑧𝑡−𝑝 + 𝑎𝑡−𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑝𝜀𝑡−𝑞                               (8)                                                             
                                 

 

This means that the series can be modeled by the past values and the error term. The ARMA model 

proposed by Wold became a challenge to model real life time series in that it required: i) 

transformation of original series to make it stationary, ii) specifying the appropriate order of p and 

q, iii) parameter estimation by nonlinear optimization procedures (Makridakis et al.,1995). 

 

3.4.2 Autoregressive Integrated Moving Average (ARIMA) Models 

The advent of computers in the 1960’s made it possible for computations and optimization of 

parameters. Box and Jenkins (1970 and 1976) integrated work done by previous researchers and 

popularized ARIMA models. In most instances in hydrology, observation data may be subjected 

to trend and periodicity due to seasonal behaviour making it non-stationary in both mean and 

variance hence cannot be fitted using ARMA models. The success of Box and Jenkins approach 

was based on its ability to overcome these problems by transforming a time series into stationary 

series leading to a model requiring few parameters to be estimated in the final choice of the model 

(Makridakis et al., 1995). In generalizing the model, they obtained a multiplicative Autoregressive 

Integrated Moving Average (ARIMA(p,d,q)×(P,D,Q)w) model.  

It consist of a seasonal ARMA (P,Q) fitted to a Dth-seasonal difference of data coupled with a 

non-seasonal ARMA(p,d) fitted to the dth difference of the residuals of the former model (Salas et 

al.,1980). The following operations are described below prior to the formulation of the generalized 

multiplicative ARIMA model; 

 

i) Seasonal AR operator; 𝛷(𝐵𝑤)𝑍𝑡 = (1 − 𝛷1𝐵𝑤 − 𝛷1𝐵2𝑤 − ⋯ … . . 𝛷𝑝𝐵𝑝𝑤)𝑍𝑡             (9) 

ii) Seasonal MA operator; 𝛩(𝐵𝑤)𝑍𝑡 = (1 − 𝛩1𝐵𝑤 − 𝛩1𝐵2𝑤 − ⋯ … . . 𝛩𝑄𝐵𝑄𝑤)𝛼𝑡           (10)
 

iii) Non Seasonal AR operator;
 
𝜙(𝐵)𝑍𝑡 = (1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ … . . 𝜙𝑝𝐵𝑝)𝑍𝑡             (11)
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iv)   Non Seasonal MA operator;
 
𝜃(𝐵)𝑍𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ … . . 𝜃𝑞𝐵𝑞)𝜀𝑡                  (12)                                                                                                                                                                                                                                                                                                                                                

When the ARMA (P, Q) model is fitted in the Dth seasonal difference of period w, the results 

is a seasonal ARIMA (P, D, Q) w model given by;                                                                                                                                                                                     
 

(1 − 𝛷1𝐵𝑤 − 𝛷1𝐵2𝑤 − ⋯ … . . 𝛷𝑝𝐵𝑝𝑤)𝑍𝑡(1 − 𝐵𝑤)𝐷𝑍𝑡 = (1 − 𝛩1𝐵𝑤 − 𝛩1𝐵2𝑤 −

⋯ … . . 𝛩𝑄𝐵𝑄𝑤)𝛼𝑡                
                                                                                                  (13)                 

When the ARMA (p, q) model is fitted in the dth difference of the αt  series, the result is a non-

seasonal ARIMA (p, d, q) model given by;  

(1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ … . . 𝜙𝑝𝐵𝑝)(1 − 𝐵)𝑑𝛼𝑡 = (1 − 𝜃1𝐵𝑤 − 𝜃2𝐵2𝑤 − ⋯ … . . 𝜃𝑞𝐵𝑞𝑤)𝜀𝑡                                                                                              

  (14)
 

By solving equation (14) for α t and replacing it in equation (13) , the result is a multiplicative 

ARIMA(p,d,q)×(P,D,Q)w model  which can be written in a condensed form; 

𝛷(𝐵𝑤)𝜙(𝐵)(1 − 𝐵𝑤)𝐷(1 − 𝐵)𝑑𝑍𝑡 = 𝛩1𝐵𝑤𝜃(𝐵)𝜀𝑡                                                        (15)          

3.5 BOX JENKINS APPROACH FOR ARIMA MODELLING 

This section outlines a systematic approach to hydrological time series modelling and how it was 

applied for forecasting of groundwater levels in Ramotswa wellfield. The first step was 

identification of the composition of the model. This step decides whether the model will be 

univariate or multivariate or a combination of univariate and disaggregation (Salas et al., 1980). 

This identification depends of a number of factors which include characteristics of the whole water 

resource system and that of the hydrologic time series data. In the case of the Ramotswa wellfield, 

monthly groundwater level was available at thirteen boreholes, hence a univariate model was used. 

Once the form of the model has been identified, the type of the model has to be decided from 

different alternatives such as AR, ARMA, ARIMA, and disaggregation models. Once again the 

characteristics of the times series data plays an important role in deciding the type of model to use. 

Time series data is said to be stationary when its statistical parameters such as mean and variance 

remain constant with time (i.e. there is statistical equilibrium), otherwise data is non-stationary. 

For instance, ARMA models are used to model stationary data such as annual flows (Salas et al, 

1980). However as already mentioned in the proceeding chapter, most hydrological processes such 
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as stream flow and rainfall which are observed daily, weekly or monthly are non-stationary due to 

the presence of trends and seasonal effects. ARIMA models do account for trend and seasonality 

in the data through differencing in order to achieve stationarity. The level of differencing which 

usually varies from 0 to 2 is highly dependent on the level of stationarity of the data (Muhammad, 

2012). Since groundwater level data was used in this study, it was more likely to be non-stationary 

hence ARIMA model was used.  

Having recommended a univariate ARIMA model, a three step iterative procedure developed by 

Box and Jenkins (1976) is described. It consist of three main iterative steps which are; 

i) Model Identification 

ii) Parameter Estimation 

iii) Diagnostic checking(Testing Goodness of fit) 

3.5.1 Model identification 

The important tools for model identification are the visual inspection of the original series and the 

behaviour of both the ACF and PACF. This is a stage in which a tentative model is chosen from a 

family of multiplicative ARIMA(p,d,q)×(P,D,Q)w models. It involves specifying the orders of the 

non-seasonal component (p, d, q) and those of the seasonal component (P, D, Q). w represents 

seasonality which could be days, weeks, or months. p, d and q are autoregressive, required 

differencing, moving average respectively for the non-seasonal component, while P,D,Q represent 

the autoregressive, differencing and moving average respectively for seasonal component. Model 

identification is done by plotting graphs of ACF (correlogram) and PACF from the series. The 

ACF indicates the extent of persistence (serial dependence) within the series for lags 1, 2, 3... up 

to lag K. It is given by; 

 𝑟𝑘 =
∑ (𝑛−𝑘

𝑡=1 (𝑥𝑡−𝑥)(𝑥𝑡+𝑘−𝑥))

∑ (𝑛
𝑡=1 𝑥𝑡−𝑥)2                                                                                                (16) 

 

where; rk is the autocorrelation function and k is the lag. The partial autocorrelation function 

(PACF) also indicate the extent of serial correlation at a given lag after accounting for the 

correlation from intervening lags. In addition to the ACF’s and PACFs, the 95% interval limits are 

plotted for each lag. They indicate the significance of the correlation. The first serial correlation 
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coefficient  r1 is currently the most useful measure of time dependence of a series (Salas et al., 

1980). The 95% confidence limits for corellogram are given by; 

 𝑟𝑘 =
−1±1.96√𝑁−𝑘−1

𝑁−𝑘
                                                                                                                      (17)                 

The order of AR (p) is determined by the number of positive successive spikes at lags greater than 

zero which are significant, while the order of the MA(q) is determined by the number of successive 

negative spikes at lags greater than zero which are significant. When the spikes are within the 95 

% confidence limits, the correlation is considered insignificant indicating the absence of serial 

dependence between the observations. 

3.5.2 Parameter Estimation 

Following the identification of a tentative model, parameters such as 𝜙, 𝛷 , 𝜃 and 𝛩 are estimated 

and their number depends on the order of the model and the characteristic of the series being 

studied. These can be estimated at three levels of increasing accuracy (Salas et al., 1980); 

i) Preliminary estimates using Yule -Walker equation 

ii) Maximum likelihood method-Steepest descent algorithm may be used to obtain the 

maximum likelihood of parameters and residuals 

iii) Non-linear estimation-By using a Taylor series expansion 

The parameters estimated should not be highly correlated. This can be checked through a 

correlation matrix among the AR and MA parameters. A model that has highly correlated 

parameters is not robust to changes in the data hence not suitable for forecasting (Reagan, 1984). 

In addition to that, the parameters must be significantly different from 0. Parameters which are not 

significantly different from zero must be removed from the model. When all these conditions are 

met, the analysis should proceed to the next stage, otherwise the parameters have to be re-

estimated. 

3.5.3 Goodness of fit/Diagnostic Stage 

In the diagnostic stage, the modeller has to ensure that the modelling assumptions of normality 

and independence of residuals are verified, i.e. the model is parsimonious. A parsimonious model 
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is the one which contains a minimum number of parameters to achieve white noise residuals. For 

instance, for an AR (P) model, the residual can be written as; 

 
𝜀𝑡 = 𝑧𝑡 − 𝜙1𝑧𝑡−1 − 𝜙2𝑧𝑡−2 − ⋯ − 𝜙𝑝𝑧𝑡−𝑞  

                                                                         (18)
 

This yields residuals 𝜀1, 𝜀2 … 𝜀𝑛 which would be tested for independence and normality. This can 

be achieved by; 

i) Corellogram; Plotting of ACF and probability limits of residuals and verifying that they 

are white noise. At any lag, the white noise residuals are not supposed to show any 

significant correlation, i.e. they have to lie within the 95 % confidence limits 

ii) Ponte Manteau Lack of Fit test; The Q statistic is given by; 

 Q = 𝑁 ∑ 𝑟𝑘
2𝐿

𝑘=1 (𝜀)  
                                                                                                             (19)

 

where rk is the autocorrelation of residuals and L may be of order between 10 and 30% of sample 

size N. Q is approximately χ2 (L-P). If Q < χ2 (L-P), then the residual is independent and the model 

is adequate, else a different model needs to be tested (Salas et al., 1980). 

Normality test can be done by plotting the empirical distribution of residual on a normal 

distribution paper and verify whether the plotted points lie in a straight line. The modeller also has 

to ensure that that between competing models, the right order of the model is selected. Akaike 

(1974) came up with such a criteria which considers the principle of parsimony to ensure that the 

fitted model is more adequate compared to others. For instance, for ARMA (p, q) model, 

 

AIC = 𝑁𝑙𝑛(𝜎𝜀
2) + 2(𝑝 + 𝑞)  

                                                                                                 (20)
 

where N is the sample size and 𝜎𝜀
2 is the residual variance. The model that gives a minimum AIC 

is the one that is selected. Once the candidate model passes the goodness of fit stage, it can now 

be used for forecasting. Otherwise the procedure has to be repeated again until an adequate model 

is formulated. 
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The summary of the iterative systematic approach for ARIMA modelling by Box and Jenkins 

(1970) is shown on Figure 3.1. This approach was applied for modelling and forecasting of 

groundwater level time series in the Ramotswa wellfield. 

 

Fig 3.1 Box Jenkins approach 

(http://home.ubalt.edu/ntsbarsh/business-stat/stat-data/forecast.htm) 

 

 

 

 

 

http://home.ubalt.edu/ntsbarsh/business-stat/stat-data/forecast.htm
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3.6 THOMAS-FIERING (T-F) MODEL 

Non stationary time series data brings a lot of complications in development of mathematical 

models for hydrological applications. Thomas and Fiering (1962) came up with a mathematical 

model which allows for non-stationary in observation data for synthetic generation of monthly 

flow sequences. Since then, a lot of researchers have applied this model for forecasting of 

hydrological variables especially stream flow and water quality data. However, in this study, an 

attempt was made to model and forecast monthly groundwater levels data using T-F model. The 

model is of Markovian nature with periodic parameters such as monthly mean, standard deviation, 

and the lag zero cross correlation between successive months (Subagadis, 2009). In its simple 

form, the model consists of twelve regression equations, one for each month of the year. Thomas 

Fiering model is given by; 

𝑥𝑖,𝑗 = 𝑥j̅ + 𝑏𝑗(𝑥𝑖,𝑗−1 − 𝑥j̅) + 𝑧𝑖𝑠𝑖√(1 − 𝑟𝑗
2

                                                                       (21)
 

For each month, (j= 1, 2, 3……………up to j = 12) 

𝑥j̅  is the mean given by; 𝑥j̅ =
∑ 𝑥𝑗𝑖

𝑁
𝑖=1

𝑁
  (i = j, 12+ j, 24+ j…………….)                             (22) 

S is the standard deviation given by;

   

𝑆𝑗 = √∑
(𝑥𝑗𝑖−𝑥𝑗)2

(𝑁−1)
𝑁
𝑖=1

                                               (23) 

rj is the correlation coefficient with the proceeding observation given by;

                                                                                                            

 

rj =
∑ (𝑥𝑗𝑖−𝑥𝑗)((𝑥𝑗+𝑖,𝑖−𝑥𝑗+1)𝑁

𝑖=1

√∑ (𝑥𝑗,𝑖−𝑥𝑗)
2𝑁

𝑖=1  ∑ (𝑥𝑗+1,𝑖−𝑥𝑗+1)
2𝑁

𝑖=1               

                                                              (24)

                               

 

bj is the slope of the regression equation relating months observation to observation in the 

preceding month given by; 

    

bj =
𝑟𝑗𝑆𝑗+1

𝑆𝑗
                                                                                                                     (25)                                                                                                                                              

𝑧𝑖 is the random normal deviate of mean and unit standard deviation. 
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From the Thomas –Fiering model (equation 21) the first term represents the mean, the second term 

represents the regressed component on the previous observation, the third term is the random 

component. The model accounts for the persistence up to lag 1, therefore may be regarded as a 

non-stationary first order Autoregressive model (Subagadis, 2009). 

 

3.7 GEOSTATISTICAL MODELLING 

Geostatistical modelling is an interpolation technique that is based on statistical relationships 

among measured points in space. It has many applications in hydrology which includes delineation 

of critical areas where measures like controlled pumping, artificial recharge, pollution control, 

have to be implemented. In this study, geostatistical method was used to determine the spatial 

distribution of groundwater table during the dry and wet season. This was achieved by obtaining 

a prediction surface of groundwater level based on the available data from 21 observation wells 

and determination of accuracy of those predictions. 

A very important tool in geostatistical analysis is the semi-variogram. It expresses the spatial 

dependence between neighbouring observations separated by a distance h (Ahmadi et al., 2007). 

A semi variogram is defined as half of the variance of the difference between attribute values of 

all points separated by h and can be determined using the following relationship; 

γ(h) =
1

2𝑁(ℎ)
∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]2𝑁(ℎ)

𝑖=1                                                                                   (26) 

Z(x) is the magnitude of the variable, N (h) is the total number of pairs of attributes that are 

separated by a distance h. The important semi -variogram parameters are; sill, nugget and the range 

as shown by the graphical representation below; 

 

Fig 3.2: Semi Variogram with its parameters 

Source :( http://spatialanalyst.net/ILWIS/htm/ilwismen/graph_window_add_semivariogram_model.htm) 
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Different semi variogram models are; 

      i)  Exponential Model 

      𝛾(ℎ) = 𝐶0 + 𝐶1 {1 − 𝑒𝑥𝑝 (−
3ℎ

𝑎
)}                                                                                       (27) 

      ii)   Gaussian Model 

 

        𝛾(ℎ) = 𝐶0 + 𝐶1 {1 − 𝑒𝑥𝑝 (−3 (
ℎ

𝑎
)

2

)}                                                                               (28)      

 

      iii)  Spherical Model 

          

        𝛾(ℎ) = {
𝐶0 + 𝐶1 {

3

2

ℎ

𝑎
−

1

2
(

ℎ

𝑎
)

3

} 0 ≤ ℎ < 𝑎

𝐶0 + 𝐶1 𝑎 ≤ ℎ
                                                                      (29)                      

 

where; C0 is the nugget effect which shows the non-spatial variance, 𝐶1 is the spatial variance and 

a is the range which corresponds to the separation distance at which the spatial autocorrelation 

diminishes. The following are four important steps in geostatistical modelling; 

i) Determination of experimental semi-variogram using the available data 

ii) Fitting of different semi-variogram models to the experimental one 

iii) Checking the adequacy of the model based on statistical measures, i.e. cross 

validation. In cross validation, interpolated and actual values are compared the model 

that yields the most accurate prediction is retained. Cross validation method used is; 

 𝑀𝐸 =  
1

𝑁
∑ (𝑧𝑁

𝑖=1

∗
(𝑥𝑖) − 𝑧(𝑥𝑖 ))                                                                                              (31)                                                                                                                                                                                                                                                                                                                          

where 𝑧*(xi) and 𝑧 (x) are estimated value and observed value respectively. 

Interpolation comes after the most accurate model has been selected as described above. In this 

dissertation, ordinary kriging method was be used. A brief description of this interpolation 
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technique and how it is used to estimate variables at unknown locations based on the measure 

variables at known locations is presented below; 

Ordinary Kriging model:     𝑧(𝑠) = 𝜇 +  𝜀(𝑠)                                                                         (32)   

 𝜇 is the mean for the data (no trend) and 𝜀(𝑠) is random errors with spatial dependence. The 

predictor at a given location S0 is given by; 

  𝑧∗(𝑠0) = ∑ 𝜆𝑖
𝑁
𝑖=1 𝑧(𝑠𝑖)                                                                                                            (33) 

 

S0 is the prediction location, while is  𝜆𝑖 weight for measured value at location i. 𝜆𝑖 

depends on semivariogram, distance to prediction location, and the spatial relationship around 

the prediction location. To have an unbiased estimate, the difference between the prediction and 

actual value should be as small as possible hence minimize the statistical expectation given by;  

 

(𝑧(𝑠0) − ∑ 𝜆𝑖
𝑁
𝑖=1 𝑧(𝑠𝑖))2                                                                                                             (35) 
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CHAPTER 4-TREND AND INTERVENTION ANALYSIS 

4.1 INTRODUCTION 

As stated in section 1.4 the main objective of this study is to model the spatial and temporal 

variation of groundwater level in the wellfield using monthly groundwater level data from 

observation boreholes. This data was collected during a monitoring period between 2002 and 2012. 

Before the modelling part, this chapter covers the following aspects; 

 Data availability 

 Time series hydrographs of  during the monitoring period 

 Intervention analysis  

 Trend analysis 

4.2 SOURCE AND AVAILABILITY OF DATA 

Modelling of the spatial and temporal fluctuation of groundwater level at Ramotswa wellfield 

relied on the availability of reliable groundwater level data since all the models used are data driven 

models. This data was obtained from Department of Water Affairs (DWA), Groundwater Division 

from 21 observation boreholes. The data was taken on monthly basis during a 10 year monitoring 

period (i.e. from 2002 to 2012). The length of the monitoring period differs slightly between 

individual boreholes. For stochastic modelling and forecasting, 13 of the 21 observation boreholes 

shown on table 4.1 were used based on their continuous records of data during the monitoring 

period. For geostatistical modelling, all the 21 boreholes were used for analysing spatial 

groundwater level scenario during wet and dry seasons. Detailed spatial and temporal modelling 

has been presented under chapter 5. There were some missing records due to blockage of some 

boreholes and inaccessibility due to flooding during rainy seasons. The missing records 

encountered were filled by linear interpolation on SPSS. After subjecting data to intervention 

analysis, the time of intervention was determined for each borehole data series. The data after the 

time of intervention was used for trend analysis and forecasting. The table 4.1 below shows the 

locations of observation boreholes used for both spatial and temporal analysis. 
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Table 4.1 Observation boreholes and their locations 

Borehole Latitude Longitude Period Length of Records Remarks 

        (Month)   

BH4155 25.87 -24.89     Too many gaps 

BH4160 25.88 -24.9 2005-2012  Too many gaps 

BH4163 25.88 -24.86 2002-2012 130 Reliable data 

BH4164 25.88 -24.89 2002 -2012 130 Reliable data 

BH4165 25.87 -24.85 2003-2012 102 Reliable data 

BH4168 25.86 -24.88   Too many gaps 

BH4341 25.88 -24.88 2005-2012 93 Reliable data 

BH4348 25.88 -24.9 2002 -2012 131 Reliable data 

BH4371 25.89 -24.88 2002 -2012 130 Reliable data 

BH4885 25.88 -24.92 2002-2012  Too many gaps 

BH4886 25.87 -24.84 2002 -2012 129 Reliable data 

BH4887 25.88 -24.85 2002 -2012 127 Reliable data 

BH4972 25.88 -24.91 2003-2012  Too many gaps 

BH4973 25.87 -24.91 2002-2012 129 Reliable data 

BH4974 25.87 -24.91 2004-2012  Too many gaps 

BH4995 25.87 -24.84 2002-2012 129 Reliable data 

Z 4401 25.87 -24.9 2005-2012 93 Reliable data 

Z 6423 25.86 -24.86 2002-2012 126 Reliable data 

BHZ 6424 25.84 -24.89 2002 -2012 132 Reliable data 

BH 6501 25.88 -24.92 2002-2012  Too many gaps 

BH10128 25.88 -24.87 2005-2012   Too many gaps 
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Fig 4.1-Map showing location of observation boreholes in Ramotswa wellfield 

4.3 GROUNDWATER LEVEL HYDROGRAPHS FOR VARIOUS BOREHOLES  

Ramotswa wellfield was abandoned in 1996 due to groundwater pollution mainly from pit latrines. 

Work has been done recently to refurbish the wellfield and utilize some of the selected production 

borehole water as a drought mitigation strategy. During this monitoring period from 2002 to 2012, 

there was no abstraction of water from production boreholes. This implies that groundwater level 

series used in this study are static levels and were not influenced by pumping. Therefore it can be 

safely assumed that water table response was mainly due to natural hydro-meteorological factors 

and changes in climatic conditions. The groundwater level and monthly rainfall series during the 

10 year monitoring period for 13 boreholes are shown by the 3 graphs on Figures 4,2 a) b) and c). 
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4.3.1 Discussions 

The graphs show the groundwater level hydrographs with the superimposed monthly rainfall 

hydrographs. The boreholes in Figures 4.2a and 4.2b are generally shallower with groundwater 

levels ranging between 2 and 7 m. Boreholes in Figure 4.2c are deeper with groundwater levels 

between 7 and 25 m. The following observations can be made from these hydrographs; 

i) A general decline in groundwater levels between years 2002 and 2006 and the rate of 

decline decrease significantly between 2006 and 2012. In fact the hydrographs appears 

to stabilize after year 2006. 

ii) There were 4 significant rainfall events in January 2006 (209 mm), December 2007 

(129mm), January 2009(219 mm) and January 2010 (304.5 mm). 

iii) In all the cases, the periods of high rainfall events coincided with a significant rise in 

groundwater levels. 

Since these water levels were taken during periods of no pumping due to shutting down of 

production boreholes, the following points can be used to justify the above observations; 

i) The response in groundwater levels is similar in all the boreholes i.e. periodic 

discharges and recharges charges are similar but different in magnitude. The steady 

decline in groundwater level between 2002 and 2005 can be directly linked to a period 

of lower average monthly rainfall (i.e. less than 100 mm). The recovery of groundwater 

levels between 2006 and 2012 can be linked to an increase in monthly rainfall 

especially due to the four periods of significant rainfalls mentioned above. Moreover, 

it can be generally concluded that the similar behaviour in terms of response to rainfall 

implies that the hydrogeological conditions underneath are similar. In terms of depth 

of groundwater table, boreholes which are shallower are closer to the Notwane river as 

shown in drainage map on Figure 4.1 while those further away are deeper (e.g. 

BHZ6424). This shows that groundwater flow is highly influenced by topography and 

it is flowing in the north and north eastern direction towards the Notwane River. The 

topographical effect was also confirmed by geostatistical results in chapter 5. 
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ii) The significant and immediate response due to heavy rainfall events which caused 

flooding in 2006 and 2010 can be described in terms of the hydrogeology of the area. 

As it has been already stated in section 1.3.5, the wellfield sits on high yielding aquifer 

system of Ramotswa Dolomite and Lephala formations shales. However most of the 

boreholes are located in the dolomite aquifer (Wellfield Consulting Services, 2011). 

Ramotswa Dolomite is a karst aquifer consisting of a network of interconnected 

fractures and water collecting channels. One of the most distinctive features of karst 

aquifers is their capacity to be filled and emptied fast due to large fracture channels, 

good interconnection and high permeability of surface zones (Milanovic et al,2004). 

During the rainy season, there are vertical changes in groundwater level hydrographs 

while dry season is a recessive period in which water table is constantly lowering. 

Ramotswa observation boreholes groundwater hydrographs hence demonstrate a 

classical representation of a karst aquifer indicated by the vertical response of 

groundwater level during wet season and water level during dry season. Figures 4.3a) 

and 4.3 b) taken at the South Eastern part of the study area during a site visit give an 

indication of the  hydrogeological conditions and the sloping terrain which supports 

high recharge rates during rainy season. 

 

Fig 4.2 a) Groundwater level and rainfall hydrographs 
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Fig 4.2 b) Groundwater level and rainfall hydrographs 

 

Fig 4.2 c) Groundwater level and rainfall hydrographs 
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                                Fig 4.3 a) Karst landscape is common throughout the study area                                                                                                                        

 

 

                            Fig 4.3 b) Terrain slopes in the west-east direction towards the main stream 
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4.4 GROUNDWATER LEVEL INTERVENTION ANALYSIS 

The importance of understanding the characteristics of data and analysing the effect of natural and 

man-made changes in hydrological time series was described in section 2.2. In this section, 

intervention analysis on groundwater level series at various boreholes shown in Table 4.2 for the 

study period is presented. The first presentation is the results from the graphical approach in which 

CUSUM values are plotted against time. Fig 4.4 gives an indication of the suspected time of 

intervention for BH4341. The rest of the plots are shown appendix A for other boreholes. As 

already described under section 3.2.1, the time series is free from intervention when the CUSUM 

values oscillates about the axis (Parida et al., 2008). The groundwater level data was further 

analysed using student t-test (split sample test) described under section 3.2.2. The reason behind 

this further analysis was to ascertain whether there was intervention in data or not. For this test, 

the samples were split into two groups at the suspected time of intervention and then it was 

determined whether the two samples are statistically different at 5 % significance level. The results 

of the student’s t-test are summarized on Table 4.2. 

 

  

Fig 4.4 CUSUM Plot using observed GWL for BH 4341(2005-2012) 
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Table 4.2 Results of Student t-test 

Boreholes 
Student t-

Test 

Critical 

Value  
Result Time of Intervention 

BH4341 7.09 1.96 Significant Intervention Nov-07 

BH6423 9.13 1.96 Significant Intervention Nov-07 

BH4887 -5.64 1.96 Significant Intervention Sep-07 

BH4973 5.06 1.96 Significant Intervention Sep-07 

BH4165 8.89 1.96 Significant Intervention Sep-07 

BH4164 6.75 1.96 Significant Intervention Nov-07 

BH4163 10.24 1.96 Significant Intervention Oct-07 

BHZ6424 12.72 1.96 Significant Intervention Jan-08 

BH4886 10.72 1.96 Significant Intervention Dec-08 

Z4401 35.4 1.96 Significant Intervention Dec-07 

BH4371 5.67 1.96 Significant Intervention Oct-07 

BH4348 6.08 1.96 Significant Intervention Dec-07 

BH4995 8.19 1.96 Significant Intervention Nov-07 

 

4.4.1 Discussion 

Figure 4.4 shows a steady rise in the CUSUM values between years 2002 and end of year 2007. 

This rise indicates a period in which the groundwater table in almost all the 13 boreholes was 

generally declining. The steady decline in the CUSUM plot was evident between year 2007 and 

2012. This indicates a period in which there was generally a reduction in the rate of decline of 

groundwater levels hence it can be interpreted as a recovery period. The time of intervention for 

most boreholes according to the CUSUM plot was detected at the end of 2007. This needed to be 

confirmed by the results of the split sample test at 5 % significance level. The results of the split 

sample test presented in table 4.2 shows that there was significant intervention in groundwater 

level data for all the boreholes. The t- statistics computed are outside the range of -1.96 and 1.96 

at 5 % significance level. The time of intervention of groundwater level series for most boreholes 

is at the end of year 2007 except for BHZ6424 and BH4886 which are January and December 

2008 respectively. This implies that in all the 13 boreholes analysed in the wellfield, their 
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groundwater level time series data do not come from the same population (i.e. the data is not 

homogenous). It is for this reason that groundwater data after intervention was used for modelling 

as shown in the next section. 

4.5 GROUNDWATER LEVEL TREND ANALYSIS 

Mann Kendall test which was presented in section 3.3 was the method used for trend analysis at 

the selected boreholes. Trend analysis of groundwater levels provides valuable information in 

describing hydrological dynamics within the aquifer system due to interaction of different surface 

and subsurface processes. It also helps in identifying future challenges that are likely to arise due 

to different stresses in the groundwater system of Ramotswa wellfield. Trend analysis was 

conducted using data after the time of intervention, therefore it is of relevance to the current 

climatic conditions of the study area. The Mann Kendall test results for 13 boreholes have been 

summarized and presented in Table 4.3. 

Table 4.3 Trend Results at various observation boreholes 

Borehole  Mann Kendall S Variance of S Test Statistic Zs Critical Value Result 

BH4341 277 21076 1.91 1.96 Trend is not significant 

BH6423 264 20018 1.86 1.96 Trend is not significant 

BH4887 370 24557 2.35 1.96 Trend is significant 

BH4973 119 23377 0.77 1.96 Trend is not significant 

BH4165 -638 16984 -4.89 1.96 Trend is significant 

BH4164 348 24571 2.21 1.96 Trend is significant 

BH4163 604 24577 3.85 1.96 Trend is significant 

BHZ6424 -42 27101 -0.25 1.96 Trend is not significant 

BH4886 -58 9754 -0.6 1.96 Trend is not significant 

Z4401 509 22220 3.41 1.96 Trend is significant 

BH4371 242 27101 1.46 1.96 Trend is not significant 

BH4348 286 23374 1.86 1.96 Trend is not significant 

BH4995 -130 23378 -0.84 1.96 Trend is not significant 
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4.5.1 Discussion 

The null hypothesis (Ho) that there is no trend in the data is either accepted or rejected depending 

on the computed test statistic Zs (Kampata et al., 2008). From the table above, positive Z values 

are an indication that groundwater levels are declining with respect to the ground surface while the 

negative values indicate an increase in groundwater levels. On the basis of this description, it can 

be seen that 9 of the boreholes are showing a decreasing trend in groundwater levels as indicated 

by the positive values of Zs. Of those nine boreholes showing a decrease in groundwater levels, 

trend is statistically significant at 4 boreholes which are BH4887, BH4164, BH4163, and Z4401. 

This is indicated by the Zs values which are outside the critical Z-table limit of ±1.96 at 5 % 

significance level. An increase in groundwater level is evident at 4 boreholes as indicated by the 

negative Zs values (i.e. BH4165, BH4886, BHZ6424 and BH 4995). Among these boreholes, only 

one borehole series is showing a statistically significant increasing trend (i.e. BH4165).  

 

4.6 Summary 

The CUSUM findings have revealed that there was significant change in groundwater level series 

at all the boreholes considered in this study. In most of the boreholes, change in data was detected 

at the end of year 2007. These changes were confirmed by split sample analysis in a manner 

described in section 3.2.2 in which the t-statistic was tested against a specified critical value of 

1.96 at 5 % significance level. This change in groundwater level data is likely to be due to change 

in hydroclimatic conditions especially the significant recharges due to rainfall events that caused 

flooding in years 2006, 2007, 2009 and 2010 as highlighted in section 4.3.1. In terms of trend 

analysis, trend is statistically significant at 5 boreholes (BH4887, BH4165, BH4164, BH4163 and 

Z4401) while it is insignificant at the remaining 8 boreholes (61 % of monitoring boreholes). 

Therefore it could be concluded that the period after year 2006 was a recovery period of 

groundwater levels and this  can justified by the fact that most boreholes were not showing 

significant trends compared to a period of  declining levels before 2006.  
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CHAPTER 5- STOCHASTIC AND GEOSTATISTICAL 

MODELLING 

5.1 INTRODUCTION 

In this chapter, modelling results from two stochastic models for groundwater level forecasting at 

13 observation boreholes in Ramotswa wellfield are presented. Data taken after the time of 

intervention was used for model development. As already stated, data after the time of intervention 

is considered relevant to the current climatic conditions of the study area and hence it is very useful 

in water resources planning and management. The results from the best fitted model were then 

used for three months forecasting. This investigation enables recommendation of the best model 

between these two linear stochastic models for forecasting of groundwater level. The first part of 

the chapter focuses on describing fitting of ARIMA model followed by Thomas-Fiering model. 

The last part (i.e. Section 5.5) presents spatial modelling of monthly groundwater levels for dry 

season scenario (July 2005) and wet season (February 2006). 

 

5.2 ARIMA MODELLING 

The detailed Box-Jenkins approach for ARIMA modelling has been presented under section 3.5 

and summarized under Figure 3.1. This iterative approach was used for modelling groundwater 

level fluctuation. One of the most important requirements for using this approach is that data is 

normally distributed. In boreholes where data was not normally distributed, data had to be 

transformed to normal using logarithmic transformation method. 

ASTSA software was utilized for necessary computations such as Autocorrelation Function 

(ACF), Partial Autocorrelation Function (PACF), parameter estimation and AIC. The ACF and 

PACF plots are necessary to determine the possible persistence structure of the data and hence 

identifying the order of the model (Ahmed et.al, 2001). In order for ASTSA to give reliable results, 

correct inputs of possible model orders, differencing and the presence of seasonal components are 

very important. Therefore the ACF and PACF had to be carefully analysed. After the inputs of the 

possible model orders and differencing (p, d, q, P, D, and Q) as defined in chapter 3, ARIMA 

search was conducted to identify all possible models for a particular borehole series.  
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As stated by Hipel et al., (1994), the basis of model building is to keep the model as simple as 

possible but the model should provide a good fit to the modelled data. Different selection criteria 

such as Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC) are available. 

Both criterions use the principle of parsimony to ensure that the fitted model is the most adequate 

from a range of other possible models. For this study, AIC was used for selecting the best model 

based on the model giving minimum AIC. 

The following is a presentation of a summarized procedure and results obtained with an aid of 

ASTSA software for BH4341. The same procedure was used for the other 12 boreholes in the 

wellfield. The ACF s and PACFs of data were obtained and are graphically presented below (Fig 

5.1 and Fig 5.2). 

This was the first step in the model identification process in which all possible candidate models 

were identified. It was on the basis of these plots that the possible orders of the model were 

determined as inputs for conducting an ARIMA search shown on Fig 5.3 below. For BH 4341, it 

can be seen from Fig 5.1 and 5.2 that the series is stationary. The significant spike at lag 1 for both 

plots is an indication of significant autocorrelation at lag 1. There were no other significant 

correlations from lag 12 and beyond, an indication that there was no seasonal component. The 

absence of a significant moving average is also clear for all the lags except at lag 9 and 10. This 

analysis of the ACF and PACF plots informed what values to use as inputs in ASTSA.  

 

                        Fig 5.1 ACF Plot for BH4341 
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                        Fig 5.2 PACF Plot for BH4341 

 

 

                                     Fig 5.3 ARIMA search window on ASTSA 

From Fig 5.3, the maximum possible Autoregressive (AR) on the basis of ACF and PACFs was 1. 

Non-seasonal differencing (d) ranged between 0 and 1. There was no Moving Average (MA) for 

the non-seasonal part. All the seasonal components were not significant because all the correlations 

were lying within the 95% confidence limits for lag 12 and beyond as shown on Fig 5.1 and Fig 

5.2. 
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Table 5.1 Comparisons of candidate models for BH4341 
 

  

 

 

 

                

From Table 5.1 that four possible models were under consideration. The best model for BH 4341 

was ARIMA (1,1,0) with a minimum AICC of -2.19 as highlighted. For this case, estimation of 

model parameters was done as shown in table 5.2 below. The model parameters were calculated 

using ASTSA software package. 

 Table 5.2 Parameter estimation results for BH4341 

Model 

Autoregressive 

Parameter 

Moving Average 

Parameter Variance 

Standard 

Error 

ARIMA(1,1,0)      0.271 

No Moving 

average 0.39 

 

0.13 

 

5.2.1 ARIMA Forecasting 

For all the groundwater level time series at each borehole, the last 3 monthly observed records 

were used for model verification. This was done by computing the forecasting error using the 

developed model and the actual observed data. The forecasting errors for the 3 months forecast for 

BH4341 are presented on Table 5.3 below.  

 Table 5.3 ARIMA forecast errors for BH4341.The rest are displayed under Appendix E 

Borehole Model Forecast Time Forecast Error (%) 

BH4341 (1,1,0) October 2012 3.6 

  November 2012 12.9 

  December 2012 4.02 

 

 

 

          

                             ARIMA search on BH4341 

 

                           p   d   q   P   D   Q   s     AICc 

                          0   0   0   0   0   0  12    .2195 

                          0   1   0   0   0   0   12   -2.1719 

       1   0   0   0   0   0  12    -2.1474 

                        1   1   0   0   0   0  12     -2.1912  best model 



52 
 

Table 5.4 Summary of ARIMA results for all the boreholes 

Borehole Model Parameters     Observed Forecast 95% Limits AIC 

           GWL(m) (m) Lower Upper   

BH4341 (1,1,0) AR(1) = 0.27 Oct 2012 = 2.21 Oct 2012 = 2.13 1.513 3.274 -2.19 

      Nov 2012 =2.40 Nov 2012 =2.09 1.38    3.59  

      Dec 2012 =1.99    Dec 2012 = 2.07 1.26    3.93  

        

BH6423 (1,0,0) AR(1) = 0.97  Sept 2012 =8.39 Sept 2012 =8.25 6.09 10.39 1.24 

   Oct 2012 =8.36 Oct 2012 =8.22 5.18 11.26  

     Nov 2012  = 8.42  Nov 2012 =8.20 4.48 11.91  

        

BH4887 (1,1,0) AR(1) = 0.24 Sept 2012 =2.84 Sept 2012 = 2.82 2.26 3.51 -3.33 

   Oct 2012 =2.86 Oct 2012 =2.82 2.14 3.71  

    Nov 2012 =3.03    Nov 2012 =2.82 2.03 3.91  

        

BH4973 (2,0,0) AR(1) =1.02 Aug 2012=9.64 Aug 2012=10.07 8.10 12.58 -3.26 

  AR(2) = -0.02 Sept 2012 =10 Sept 2012  = 10.18 7.45 14.01  

   Oct 2012 =10.01 Oct 2012 =10.35 6.98 15.34  

        

BH4165 (1,0,0) AR(1) = 0.98     Dec 2011 = 3.29 Dec 2011 = 3.2 2.34 4.38 -2.57 

   Jan 2012=3.45 Jan  2012=3.13 2.01 4.90  

   Feb 2012=3.25 Feb 2012=3.09 1.79 5.30  

        

BH4164 (1,0,0) AR(1)=0.99 Oct 2012 =5.46 Oct 2012 =4.77 4.32 6.64 -3.37 

   Nov 2012 =5.63 Nov 2012 =4.75 3.95 7.25  

   Dec 2012 =5.54  Dec 2012 =4.72 3.69 7.75  

        

BH4163 (1,0,0) AR(1)= 0.96 Oct 2012 =3.38 Oct 2012 =3.33 2.13 5.14 -1.95 

   Nov 2012 =3.49 Nov 2012 =3.18 1.73 5.82  

   Dec 2012 =2.96 Dec 2012 =3.04 1.47 6.29  

        

BHZ6424 (1,0,0) AR(1)= 0.99 Sept 2012 =24.29 Sept 2012 =24.26 22.67 25.97 -5.66 

   Oct 2012=24.24 Oct 2012=24.2 22.02 26.68  

   Nov 2012 =24.62 Nov 2012 =24.22 21.52 27.24  

        

BH4886 (1,0,0) AR(1)=0.99 Aug 2012=6.4 Aug 2012=6.3 4.49 8.83 -2.43 

   Sept 2012 =6.45 Sept 2012 =6.23 3.88 10.05  

   Oct 2012 =6.7 Oct 2012 =6.17 3.46 11.08  

        

Z4401 (1,0,0) AR(1)=0.995 Sept 2012 =6.65 Sept 2012 =6.74 4.49 8.83 -2.43 

   Oct 2012=6.8 Oct 2012=6.72 3.88 10.05  

   Nov 2012 =6.92 Nov 2012 =6.73 3.46 11.08  



53 
 

        

BH4371 (1,0,0) AR(1)=0.994 Oct 2012 =4.72 Oct 2012 =4.62 3.75 5.69 -3.42 

   Nov 2012 =4.87 Nov 2012 =4.58 3.41 6.15  

   Dec 2012=4.81 Dec 2012=4.54 3.16 6.50  

        

BH4348 (1,1,0) AR(1)= 0.997 Sept 2012 =6.05 Sept 2012 =6.02 4.70 7.69 -3.1 

   Oct 2012 =6.17 Oct 2012 =5.99 4.23 8.46  

   Nov 2012 =6.33 Nov 2012 =5.95 3.89 9.09  

        

BH4995 (1,0,0) AR(1)=1.00 Oct 2012 =14.68 Oct 2012 =15.06 12.10 18.01 1.9 

   Nov 2012 =15.06 Nov 2012 =15.17 10.97 19.37  

   Dec 2012=15.22 Dec 2012=15.28 10.12 20.44  

   

5.2.2 Discussions 

The selected best fitted ARIMA models for forecasting groundwater table at each borehole are 

summarized on Table 5.4. It can be observed in all the boreholes, the structure of the models shows 

only the non-seasonal component which implies that groundwater table series do not show any 

effect of seasonality. This means that all the boreholes groundwater level series are fitted by the 

simpler form of ARIMA model in the form of (p,d,q) as opposed to the multiplicative ARIMA 

model of the form (p,d,q)×(P,D,Q)w . This can be confirmed by observing the ACF and PACF’s at 

lag 12. The autocorrelations at lag 12 lie within the 95% confidence limits, which signifies an 

insignificant autocorrelation. The second observation from the result is that all the boreholes are 

fitted by first order autoregressive model i.e. AR(1) except for BH4973. AR(1) in this case implies 

that the depth of groundwater for a particular month has a strong dependence on the previous 

month’s observations. This is reflected by a significantly strong autocorrelation for most 

boreholes. However, BH4341 and BH4348 are slightly different from the rest of the AR(1) models. 

First order differencing had to be performed on the series before modelling. The structure of the 

models indicate that groundwater level at a particular time t depends on the previous 2 monthly 

observations. The time series at BH4973 was the only one fitted with an AR(2) model. This implies 

that groundwater level series have a significant autocorrelation up to lag 2 as opposed to lag 1 like 

in the rest of the boreholes. Lastly, the moving average component in almost all boreholes is 

insignificant. This can be observed from ACF and PACF under appendix B. 

Percentage errors estimates of forecasts have been presented on table 5.3 for BH4341 while the 

rest are on appendix E. These are comparisons of observed data and model’s three months forecasts 
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at the individual boreholes. For ARIMA model, the results reveal that all forecasting error 

estimates are mostly less than 15% except for BH4164. This borehole recorded the largest 

percentage error of 15.6 %. The lowest percent error estimate was found to be 0.12% for BHZ6424. 

Therefore there was generally a small difference between forecasted and observed values in all the 

13 boreholes under consideration. 

5.3 THOMAS FIERING MODEL 

Thomas Fiering model is of a Markovian nature consisting of periodic parameters such as mean, 

standard deviation and correlation between successive monthly observations (Subagadis, 2009). It 

consist of 12 regression equations, one for each month. For the purpose of modelling and 

forecasting of groundwater levels in the study area, a set of Thomas Fiering models were developed 

for 12 months at each borehole. The results are presented on table 5.6 for BH4341. A 3 months 

forecast was also conducted as shown on Table 5.5. The results for other boreholes obtained in the 

same manner have been presented in appendix D. 

      Table 5.5 Statistical parameters for BH4341 GWL time series 

Month Standard deviation Mean Z Correlation 

January 0.63 1.65 0.437 -0.2 

February 0.37 1.45 -2.12 0.35 

March  0.24 1.74 1.085 0.91 

April 0.58 1.99 -0.277 0.79 

May 0.27 1.86 -2.17 -0.09 

June 0.18 1.80 0.018 0.165 

July 0.15 1.86 -0.722 0.98 

August 0.36 1.92 0.21 0.87 

September 0.19 1.98 -0.556 0.73 

October 0.12 2.08 0.465 0.96 

November 0.14 2.11 -1.812 0.89 

December 0.21 2.16 1.526 0.85 
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 Table 5.6 Thomas Fiering Models for BH4341  

                               Thomas-Fiering Model  -   BH 4341 

𝑋𝑗𝑎𝑛 = 1.65 − 0.6(𝑋𝑑𝑒𝑐 − 2.16) + 0.98𝑍1 

     𝑋𝐹𝑒𝑏 = 1.45 + 0.21(𝑋𝑗𝑎𝑛 − 1.65) + 0.34𝑍 2 

      𝑋𝑚𝑎𝑟 = 1.74 + 0.59(𝑋𝑓𝑒𝑏 − 1.45) + 0.234 3 

      𝑋𝐴𝑝𝑟 = 1.99 + 1.91(𝑋𝑚𝑎𝑟 − 1.74) + 0.35𝑍 4 

      𝑋𝑚𝑎𝑦 = 1.86 − 0.04(𝑋𝐴𝑝𝑟 − 1.99) + 0.27𝑍 5 

    𝑋𝑗𝑢𝑛 = 1.8 + 0.11(𝑋𝑚𝑎𝑦 − 1.86) + 0.19𝑍 6 

  𝑋𝑗𝑢𝑙 = 1.86 + 0.82(𝑋𝑗𝑢𝑛 − 1.8) + 0.03𝑍 7 

     𝑋𝐴𝑢𝑔 = 1.92 + 2.09(𝑋𝑗𝑢𝑙 − 1.86) + 0.18𝑍 8 

      𝑋𝑠𝑒𝑝𝑡 = 1.98 + 0.39(𝑋𝐴𝑢𝑔 − 1.92) + 0.13𝑍 9 

        𝑋𝑜𝑐𝑡 =   2.08 − 0.61(𝑋𝑠𝑒𝑝𝑡 − 1.98) + 0.03𝑍 10 

     𝑋𝑛𝑜𝑣 = 2.11 + 1.04(𝑋𝑜𝑐𝑡 − 2.08) + 0.06𝑍 11 

      𝑋𝑑𝑒𝑐 = 2.16 + 1.28(𝑋𝑛𝑜𝑣 − 2.11) + 0.11𝑍 12 

 

Table 5.7 Forecasting results for BH4341 using T-F model 

Borehole         Months     T-F Results 

 

Observed Values 

Forecast 

Error (%) 

BH4341 October 2012 1.98  2.21 10.4 

 November 2012 1.96  2.4 18.3 

 December 2012 1.9  1.99 4.5 

 

5.3.1 Discussions 

The structure of T-F model has been described in details under section 3.6. In its structure, the 

month to month correlation plays an important role in accuracy of fit to the observed data and 

hence forecasting. Poor values of month to month correlation and large standard deviations are 

likely to provide inadequate fit making forecasts to be highly dependent on Gaussian random 

number (Ahmed et al., 2001). The performance of the model in terms of forecasting was done 

based on percentage error estimates by comparing forecasted values with observed groundwater 

table values. The forecasting results on Table 5.7 can be described as reasonable .The same can be 

said for most boreholes except for BH6423 where the forecasting errors are generally higher than 

the rest (Appendix E). These reasonable forecasts can be attributed to generally high month to 

month correlations and low standard deviations in most of the boreholes hence the forecasts are 

not just dependent on Gaussian random number. 
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5.4 Summary 

Two stochastic models were investigated for modelling and forecasting of monthly groundwater 

levels in Ramotswa wellfield at 13 observation boreholes. For ARIMA modelling, it was found 

out that groundwater levels at all boreholes were fitted by simpler form of ARIMA model as 

opposed to multiplicative ARIMA form. There was no evidence of seasonality since all ACFs and 

PACFs for lag 12 and beyond were insignificant for most of the boreholes. All the models chosen 

for forecasting were AR(1) models except for BH4973 which was fitted by AR(2) model. For T-

F model, the data generally has high month-to-month correlation and low standard deviation. This 

high correlation indicated that T-F model provided adequate fit. In terms of forecasting capability, 

both models managed to reasonably forecast groundwater level at each borehole. This is indicated 

by low forecast errors after verification with observed values for 3 months forecasting. For 

ARIMA model, the percentage errors range was 0.12 to 15.6 %. For T-F model, the percentage 

errors were higher and had a wider range (i.e. 2.37 to 53.38 %). Based on the comparisons between 

these stochastic modelling in terms of their forecasting capabilities presented in appendix E, it can 

be concluded that both models have shown their capability to produce reliable forecasts. However, 

ARIMA models which produced better forecasts are therefore recommended for forecasting 

monthly groundwater levels in the study area.   

Since these two models can produce reasonable forecasts of groundwater levels in the wellfield, 

they are very useful tools to water resources managers and can contribute towards sustainable 

groundwater resource management in a number of ways; 

i) The recent operation of the production boreholes after a long time could change the groundwater 

flow dynamics especially if there is uncontrolled abstraction and development of a huge cone of 

depression. This may result in reversals in flow directions and further contamination in an area 

that is located on a dolomite aquifer which is highly karstified and vulnerable to pollution. These 

problems can be detected by using reliable ARIMA models to forecast changes in groundwater 

levels which may result in changes in water quality. 

ii) Drought Monitoring –Water resources managers can utilize forecasting results in development 

of drought warning systems when groundwater levels reach critical levels. This would prompt 

them to make informed decisions such as putting control measures to regulate pumping rates and 

where possible shutting down production in selected areas to enable recovery of depleted boreholes 
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which would contribute towards extension of the aquifer’s lifetime. Planning and control of future 

groundwater developments relies on accurate forecasting of groundwater levels hence the study 

would assist water regulating authority in that regard. 

iii) Forecasted groundwater levels may be used together with water quality data for decision 

making including determining the rate and extent to which abstraction could be sustainably done 

on a borehole without compromising water quality since changes in groundwater levels affect 

groundwater quality. 

 

5.5 GEOSTATISTICAL MODELLING 

In sections 5.2 and 5.3 of this chapter, forecasting results were presented based on fitting two 

stochastic models to the groundwater level time series. This section presents results of using 

geostatistical techniques to model the spatial distribution of groundwater level in Ramotswa 

wellfield. These techniques are pivotal tools for sustainable management of groundwater resources 

in order to meet the continuously increasing demand for fresh water. Geostatistical techniques 

were utilized to determine the spatial distribution of groundwater table during the dry and wet 

season scenarios based on groundwater table observations at 21 boreholes. Groundwater levels for 

July 2005 were taken as representation of dry season scenario. This corresponds to a period in 

which there was less recharge from rainfall and therefore groundwater levels were generally low. 

February 2006 was chosen to represent the response of groundwater during a wet season. This was 

a time when Ramotswa village experienced extremely heavy rainfall and flooding. As a result, an 

attempt was made to obtain a groundwater level prediction surface under those two scenarios and 

hence interpolate groundwater level at unknown locations.  

5.5.1 Summary of ordinary kriging 

Before the data set for July 2006 and February 2007 were used for geostatistical analysis, normality 

checks were conducted on SPSS to check distribution of the data. This is a pre-requisite for 

applying geostatistical analysis on spatial data (Machiwal et al., 2012). After conducting 

logarithmic transformation and ensuring that data is approximately normally distributed, spatial 

interpolation process began. 
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In generating the spatial groundwater level maps, ordinary kriging method available on Integrated 

Land and Water Information System software (ILWIS) 3.3 was used. The point map was first 

created by importing groundwater table point data at each borehole into the GIS environment for 

each scenario. In order to understand the spatial autocorrelation and variance among observed 

groundwater level values at each borehole, experimental semi-variograms as well as their 

parameters were determined (i.e. nugget, range and sill). 

Three geostatistical models namely spherical, exponential and Gaussian models were fitted to the 

experimental semi variograms. The best fitted model was then used for spatial interpolation. The 

semi variogram model which fitted data the best was tested by calculating goodness of fit (R2). 

The model with the highest value of R2 was chosen for spatial interpolation. The accuracy of 

interpolation was confirmed by cross validation for a sample of boreholes. This was done by 

removing one borehole at a time then interpolating with the remaining ones and thereafter checking 

the error of interpolation. The flow chat on Fig 5.4 illustrates summarizes the steps taken in spatial 

modelling. 
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 Fig 5.4 Summary of methodology for spatial modelling of groundwater levels 
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5.5.2 Normality Tests 

In verifying that the data is indeed normally distributed, the histogram and Q-Q plots for the log 

transformed data for July 2005 and February 2006 are show on Figures 5.5 and 5.6. From visual 

inspection, it was concluded that data for both scenarios the transformed data was approximately 

normally distributed and therefore can be used for spatial interpolation. 

 

Fig 5.5a) Histogram –July 2005                                       Fig 5.5b) Q-Q- plots for July 2006 

 

               

Fig 5.6 a) Histogram –February 2006                                Fig 5.6b) Q-Q- plots for February 2006    
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5.5.3 Spatial interpolation-July 2005 

The experimental semi-variogram for the dry season scenario (July 2005) has been shown on Fig 

5.7. It shows the extent of spatial dependence of groundwater levels at the observation boreholes 

during the observation month. The variance of groundwater levels increases up to a distance 

between pairs of points of 4km then remains constant. This implies that there is spatial 

autocorrelations between groundwater levels at boreholes within a radius of 4Km (i.e. the radius 

of influence). Beyond this range there is no spatial correlation. Table 5.8 summarizes the 

parameters of 3 geostatistical models used in this study, i.e. spherical, exponential and Gaussian 

models. All the models show that the range is 4 km, which means that groundwater levels at 

unknown sites can be estimated by interpolating known groundwater levels within that radius of 

influence. The strength of spatial dependence of a variable can be determined by the nugget-to-sill 

ratio. A ratio that is less than 0.25 indicates strong spatial dependence, moderate if it is between 

0.25 and 0.75 and weak spatial dependence if it beyond 0.75 (Machiwal et al., 2012). The nugget-

to-sill ratio was found to be 0.1 which is less than 0.25, an indication that groundwater levels 

during this observation period (July 2005) has strong spatial dependence. From fitting of various 

models to the experimental semi-variogram, the best model was chosen on the basis of the model 

giving the highest R2 value. The exponential model was chosen for spatial interpolation due to a 

higher R2 value of 0.7 which implies that there is a 70% correlation between calculated semi-

variogram values and experimental semi-variogram values. The goodness of fit calculations are 

shown on appendix F. Spherical model provided another alternative since it also gave the same 

goodness of fit as the exponential model for the dry season scenario. 

Table 5.8 Parameters of three geostatistical models for Groundwater levels for July 2005 

Month Model Sill(m2) Nugget(m2) Range(m) R2 

July 2005 Spherical 0.05 0.007 4000 0.7 

 Exponential 0.06 0.006 4000 0.7 

 Gaussian 0.08 0.007 4000 0.6 
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                      Fig 5.7 Experimental Semi-Variogram and the fitted Exponential model 

 

Groundwater level interpolation maps were derived using observed data to estimate groundwater 

levels at unknown locations. In order to verify that the interpolated groundwater levels were 

reasonably estimated, Table 5.9 presents a comparison between the observed and estimated 

groundwater levels. The results for this scenario shows that even though interpolation using 

ordinary kriging slightly overestimated the depth of groundwater, the error of estimate ranged 

between 1and 18%. Therefore it could be reasonably stated that the spatial map represented the 

state of groundwater storage over the wellfield during the monitoring period of July 2005. It can 

be seen from the Fig 5.8 that in terms of spatial distribution, the observation boreholes are located 

along the Notwane River. These boreholes are shallow even in the dry season with the groundwater 

levels ranging between 3 and 5 m. For instance, BH 4341, BH 4163 and BH4371 recorded 2.63m, 

4.63m and 5.38 m. However deeper boreholes are located further away from the river (e.g. 

BHZ6424 recorded 27.13 m). There is therefore evidence of groundwater level drop across the 

wellfield in the North-Eastern direction. This shows that groundwater flow is driven by the 

difference in elevation. The spatial interpolation maps also concurs with the findings by Staudt, 

2003 in Ramotswa wellfield which revealed through the contours maps that groundwater flows in 

the North and North Eastern direction towards the river. 
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Table 5.9 Comparison between observed and interpolated groundwater levels (July 2005) 

 

 

 
Fig 5.8 Spatial interpolation map for July 2005 

 

5.5.4 Spatial interpolation-February 2006 

Similar to July 2005 scenario, the results of groundwater level interpolation have been presented 

below. The interpolation map in Fig 5.10 shows the spatial distribution of groundwater table after 

flood events in February 2006. In terms of spatial correlation, the experimental semi-variogram 

shows that the radius of influence is 3 km. The geostatistical model parameters for spherical, 

Gaussian and exponential models have been presented on Table 5.10. In this case, the nugget-sill 

ratio of 0.29 is greater than 0.25 which indicates that the observed data has moderate spatial 

dependence. In terms of goodness-of-fit of geostastical models to the experimental semi-

variogram, the Gaussian model gave the lowest R2 value as low as 0.4, hence it was not used for 

BOREHOLES Observed GWL(m) Estimated(m) % Error 

BH6423 10.67 12.2 14.3 

BH4972 6.92 7.00 1.16 

BH4163 4.63 4.91 6.05 

BH4165 5.65 6.69 18.4 

BH4371 5.38 4.93 8.36 
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interpolation. The exponential model gave an R2 of 0.7 while spherical model gave 0.9 which was 

eventually chosen and used for groundwater level interpolation. 

Table 5.10 Parameters of three geostatistical models for Groundwater levels for February 2006 

Month Model Sill(m2) Nugget(m2) Range(m) R2 

February 2006 Spherical 0.59 0.17 3000 0.9 

 Exponential 0.55 0.15 3000 0.7 

 Gaussian 0.6 0.17 3000 0.4 

 

 

 

Fig 5.9 Experimental Semi-Variogram and the fitted model (Spherical model) 

Table 5.11 shows the comparison between the interpolated groundwater level data and the 

observed data for month of February 2006.The results show that ordinary kriging in this case 

generally underestimated the depth of groundwater except for BH4155. The percentage error of 

estimation range was from 5- 31%. This is once again an indication that ordinary kriging method 

performed reasonably well in terms of estimating groundwater table at unknown locations. Similar 

to the July 2005 scenario, the existence of hydraulic gradient is evident in the North and North 

Eastern direction and this clear shows the influence of topography on groundwater flow. 
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Fig 5.10 Spatial interpolation map for February 2006 

 

 

Table 5.11 Comparison between observed groundwater levels and interpolated ones (February 

2006) 

 

 

 

 

 

 

 

 

Borehole Observed GWL(m) Interpolated(m) % Error 

Z4401 6.23 5.32 14.6 

BH4371 3.95 3.56 9.87 

BH4155 4.38 4.59 4.79 

BH4164 4.55 3.79 16.7 

BHZ6501 6.89 4.78 30.6 
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5.5.5 Response of groundwater levels due to flooding 

In the previous sections, the groundwater level conditions in the Ramotswa wellfield has been 

presented under two scenarios namely; 

- Dry season represented by season represented by observation data for July 2005 

- Wet season represented by observation data for February 2006 after heavy floods 

 

As already shown in section 4.3 by the groundwater level and rainfall hydrographs, flooding in 

2006 caused a significant rise in groundwater table, in fact all the flooding years thereafter 

coincided with and immediate rise in water levels. For the scenarios mentioned above, the response 

can be visualized through the interpolation maps on Figs 5.8 and 5.10 that the area with high 

groundwater levels increased between July 2006 and February 2007. This was supported by 

numerical data in table 5.12 below in which the percentage change in groundwater level were 

computed for each borehole. Heavy rainfalls at the beginning of year 2006 led to 6 boreholes 

recharging by more than half of their previous levels in just 6 months. Percentage increase in 

groundwater level was significantly high in boreholes downstream which are closer to the river 

than those further away upstream. This is not surprising since groundwater flow follows the terrain 

which is sloping towards the river and majority of the boreholes along the river are at a discharge 

point. Boreholes further upstream which are located at high elevations received less or no recharge 

at all (e.g. BHZ6424). This is due to the fact that water is released very fast at high elevations due 

to gravity. These observations are supported by hydrogeological characteristics of the terrain. 

Typical dolomite characteristics support fast release of ground water from high elevations and 

cause less recharge in those boreholes upstream. The fracturing and intersection with minor valleys 

in the West-East direction as reported by Staudt, 2003 is responsible for high recharge rates in the 

boreholes which are in the proximity to the Notwane River (e.g. BH4341). This also explains the 

location of the production boreholes which are also close to the river in the south eastern part of 

the wellfield. This makes groundwater on the downstream side highly vulnerable to pollution from 

pit latrines as has been the case in the past. 
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Table 5.12 Change in groundwater levels between July 2005 and February 2006  

Borehole GWL-July 2005 GWL-February 2006 Percentage recharge (%) 

BH4155 5.67 4.38 23 

BH4160 9.41 6.18 34 

BH4163 4.63 1.94 58 

BH4164 6.13 4.55 26 

BH4165 5.65 2.28 60 

BH4168 19.25 18.73 3 

BH4341 2.63 1.03 61 

BH4348 6.86 2.55 63 

BH4371 5.38 3.95 27 

BH4885 5.89 5.15 13 

BH4886 9.11 6.46 29 

BH4887 3.27 1.36 58 

BH4972 6.92 3.99 42 

BH4973 10.62 7.24 32 

BH4974 7.69 3.79 51 

BH4995 18.37 12.62 31 

BH10128 8.73 4.81 45 

Z6424 27.13 29.39 -8 

Z6501 6.72 6.87 -2 

Z4401 6.98 6.24 11 

Z6423 10.67 7.75 27 

 

5.5.6 Summary 

Geostatistical techniques were used to determine the spatial distribution of groundwater levels in 

Ramotswa wellfield for the dry (July 2005) and wet season (February 2006) using data from 21 

boreholes. Explanatory analysis shows that data for both scenarios is approximately normally 

distributed after transformation. In order to interpolate groundwater levels at unknown locations 

through ordinary kriging, the spatial correlation structure had to be investigated through semi-

variogram analysis. A strong spatial dependence for July 2005 with a nugget-to-sill ratio of 0.1 

was revealed while February 2006 showed moderate spatial dependence (Nugget-to-sill ratio of 

0.28). R2 values of 0.7 and 0.9 for July 2005 and February 2006 respectively for chosen 

geostatistical models were reasonable enough to conclude that the models were correctly chosen 

for fitting to experimental semi-variograms. Interpolation results show that groundwater flow is in 

the north and north eastern direction, and therefore groundwater fluctuation is highly influenced 
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by topography since land is sloping in that direction towards the Notwane river. The error estimates 

of interpolation shown in Tables 5.8 and 5.10 were in the range of 1 to 18 % for July 2005 and 5 

to 31 % for February 2006 respectively. These minimal errors are an indication that ordinary 

kriging performed well in terms of interpolation of groundwater levels for the study area. This 

implies that ordinary kriging can be recommended to interpolate groundwater levels at unknown 

areas .Therefore this study can be used to assist in deciding on possible areas for the expansion of 

the monitoring network since a denser network would improve the accuracy of groundwater level 

spatial interpolation. Looking at the spatial interpolation maps on figs 5.9 and 5.11, it can be seen 

that most of the boreholes are located in the N-S direction closer to the river. Hence to improve 

groundwater monitoring, the borehole network should be expanded in the north and south western 

areas. In addition to that, critical areas where flooding may cause damage to property especially 

looking at areas where groundwater level is shallow and areas which have been critically affected 

by groundwater pollution in the village can be identified by making use of these maps. 
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CHAPTER 6-SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

6.1   SUMMARY 

There is no doubt that adequate supply of water is of paramount importance for the livelihood of 

all living species on earth. Water resources availability will continue to be a serious challenge 

especially in semi-arid countries like Botswana and the rest of Southern Africa. Persistent droughts 

and the ever-increasing demand for water have resulted in depletion of surface water resources 

especially in South East region where Ramotswa (District administrative capital) and Gaborone 

(the nation’s capital) are located. The drying of Gaborone dam which is a major source of water 

in the South East District escalated water demand. This led to serious consideration of alternative 

sources of water especially groundwater resources to supplement supply from North South Carrier 

(NSC) 1. Ramotswa wellfield which is one of Botswana’s most productive wellfield was abundant 

in 1996 due to contamination of some boreholes from pit latrines. However, despite water being 

of questionable quality, the importance of groundwater in the study areas is highlighted by the 

refurbishments currently on-going at the wellfield and the blending of borehole water with surface 

water to mitigate the present drought. The construction of a P50 million reverse osmosis plant for 

treating this water is also on the pipe-line. Information on groundwater storage fluctuation with 

time due to external natural and man-made forces and how they affect the groundwater system 

needs to be understood, documented and presented to water authorities (DWA, WUC). 

Groundwater resource monitoring in both space and time by analyzing monthly groundwater level 

data provides a significant contribution towards managing Botswana’s scares water resources. This 

information is critical for decision making with regards to the sustainable use of groundwater in 

the wellfield. The main aim of this dissertation is to contribute towards this by presenting the 

results of stochastic and geostatistical modelling of groundwater level fluctuations at observation 

boreholes. 

The study first started by conducting intervention and trend analysis of groundwater level data 

collected between 2002 and 2012. Intervention analysis was done to ascertain homogeneity of 

data. Inconsistencies or shifts in the data maybe be due to several factors including changes in 

local climate or anthropogenic factors such as observational errors, changes in GWL recording 

methods and equipment used (Kampata et al., 2008). Groundwater level data after the determined 
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time of intervention was used for trend analysis and development of stochastic models. This data 

was considered to be recent and of relevance to the current climatic conditions of the study area. 

Trend analysis was conducted for each borehole data series to not only investigate groundwater 

level changes with time but to also verify the statistical significance of these changes. In the second 

part of the study, groundwater level fluctuations were modelled both in space and time using 

geostatistical and stochastic methods respectively. For time series modelling, two stochastic 

approaches were used; ARIMA and Thomas -Fiering models. These models account for the effects 

of seasonality differently (Ahmed et al., 2001). The developed models for each method were then 

used for 3 months forecasting for each observation borehole. The error estimate in groundwater 

level forecasting were quantified in order to recommend the model which produced better 

forecasts. The results of these forecasts are displayed in appendix E. For geostatistical modelling, 

groundwater level maps were produced to visualize the response of groundwater levels under 2 

different scenarios; July 2005 (dry season scenario) and February 2006 (wet season after flooding). 

The ability of ordinary kriging to estimate groundwater levels at unknown locations using known 

locations was verified by quantifying the error of interpolation.  

6.2 CONCLUSIONS 

The following conclusions can be drawn from this study; 

i) Since there was no pumping during the monitoring period from 2002 to 2012 because of the 

shutting down of the wellfield in 1996, changes in groundwater levels were a direct consequence 

of recharge from rainfall. From Figures 4.2a), 4.2b) and 4.2c) there was a steady decline in 

groundwater levels before year 2006 while afterwards the rate of decline of groundwater levels 

reduced. This could reasonably be linked to flooding events that occurred between 2006 and 2012. 

The quick response of groundwater levels to rainfall is due to hydro-geological characteristics of 

the study area. Most of the boreholes are located in the dolomite aquifer (Geotechnical Consulting 

Engineers, 2000) which is highly fractured and permeable by its nature. It is those fractures which 

formed water collecting channels which led to a general recovery of the wellfield due to significant 

recharge from flooding after year 2006. 

ii) Results of intervention analysis reveal that in all the boreholes, groundwater level data collected 

during the 10 year monitoring period had undergone a significant change. This implies that the 
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data set does not belong to the same population hence the entire data could not be used for 

stochastic modelling. The time of intervention was detected between end of 2007 and beginning 

of year 2008. This change in groundwater level data is likely to be due to changes in hydro climatic 

conditions especially the significant recharges due to rainfall events that caused flooding in years 

2006, 2007, 2009 and 2010 as highlighted in section 4.3.1. In terms of trend analysis, trend was 

statistically insignificant in most of the monitoring boreholes (62%), while few boreholes were 

showing significant trend (38%). 

(iii) Both stochastic models were able to successfully model the fluctuation of groundwater levels 

using collected monthly data. This conclusion was made based on their ability to produce 3 months 

forecast with reasonable error of estimates. The forecasting errors were ranging from 0.12 - 15.6 % 

for ARIMA models while the range for Thomas Fiering model was ranging from 2.37 - 53%. 

Therefore ARIMA model was recommended for forecasting of groundwater levels in the wellfield. 

iv) Groundwater levels measured at observation boreholes for July 2005 and February 2006 

scenarios have strong and moderate spatial dependence respectively as indicated by the nugget-to-

sill ratios. The best geostatistical models were exponential model and spherical model based on 

their goodness of fit to experimental semi-variograms. Spatial interpolation by ordinary kriging 

gave error estimates ranging from 1%- 18 % for July 2005 and 5 - 31% for February 2006 therefore 

can be recommended for estimation of groundwater levels at unknown areas in the wellfield. 

v) Since groundwater levels used to generate interpolation maps were not affected by the effects 

of pumping, therefore there is evidence that groundwater levels are highly influenced by 

topography and the presence of natural water bodies. The boreholes in the proximity of Notwane 

River are located at a lower elevation (i.e. discharge point downstream) and hence groundwater 

level is shallower. Groundwater levels at upstream boreholes are deeper. It is the existence of this 

hydraulic gradient created by elevation difference that drives groundwater in the West-East 

direction towards the river and the groundwater level maps clearly indicate that. 
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6.3 RECOMMENDATIONS 

The following are recommendations that can be considered for future research studies;  

i) In Ramotswa wellfield, groundwater abstraction through pumping has not been done since the 

closure of the wellfield in 1996 until recently when some of the production boreholes became 

operational for mitigating the current drought. This study was focused on groundwater level 

fluctuation during a 10 year monitoring period when there was no abstraction. However, there is 

no doubt that the effect of pumping would have a significant impact on groundwater storage now 

that the wellfield is operating. A study of this nature is equally of relevant importance in terms of 

controlling groundwater exploitation which would contribute towards water resources 

management. 

ii) This study was only focused on modelling and forecasting of groundwater levels. There was no 

consideration of groundwater quality due to insufficient sampling done for chemical analysis. 

However, the water quality aspect especially pollution of groundwater due to nitrates from pit 

latrines has been a subject of many discussions. As already mentioned in chapter 1, the closure of 

the wellfield was due to high concentrations of nitrates in borehole water. Therefore time series 

and spatial modelling of groundwater quality parameters is of relevant importance in the study 

area. 

iii) Stochastic and geostatistical models used in the study are mainly data driven models and were 

preferred due to availability of spatial and time series data. Their advantage as compared to 

physical models is the fact that it is cheaper and less time consuming and they do not require detail 

hydrogeological analysis of the aquifer. However, groundwater physical modelling of the wellfield 

can be considered for future studies to complement time series models. These models can to a 

large extent account for the hydrogeological characteristics as well as their heterogeneity in space 

to simulate groundwater flow and solute transport through the unsaturated zone. Fluctuation of 

groundwater levels can therefore be described in details through physical processes in the 

unsaturated zone. This would be a very significant research since Ramotswa dolomite is highly 

vulnerable to pollution especially from pit latrines in the village. 
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APPENDIX A – CUSUM Plots 

            

Fig A1: CUSUM Plot for BH4163 (2002-2012)   Fig A2: CUSUM Plot for BH4164 (2002-2012) 

            

Fig A3: CUSUM Plot for BH4887 (2002-2012)   Fig A4: CUSUM Plot for BH4165 (2002-2012) 

          Fig 

A5: CUSUM Plot for BH4348 (2002-2012)   Fig A6: CUSUM Plot for BH4341 (2002-2012) 
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Fig A7: CUSUM Plot for BH4886 (2002-2012)   Fig A8: CUSUM Plot for BH4973 (2002-2012) 

              

Fig A9: CUSUM Plot for BH4371 (2002-2012) Fig A10: CUSUM Plot for BH4995 (2002-2012) 

             

Fig A11: CUSUM Plot for Z4401 (2002-2012)           Fig A12: CUSUM Plot for BHZ6424 (2002-2012) 
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APPENDIX B– Student t-test 

 

 

BH 4341 

t1(Months) sample1  t2(months) sample2     

1 2.53  1 1.43 40 1.60 

2 2.61  2 1.38 41 1.59 

3 2.42  3 1.81 42 1.58 

4 2.57  4 1.71 43 1.66 

5 2.62  5 1.85 44 1.66 

6 2.63  6 1.98 45 1.74 

7 2.64  7 2.03 46 1.95 

8 2.73  8 2.40 47 1.99 

9 2.85  9 2.10 48 2.05 

10 2.96  10 2.19 49 2.10 

11 3.00  11 2.30 50 1.93 

12 2.32  12 2.37 51 2.03 

13 1.03  13 2.31 52 2.09 

14 1.85  14 1.24 53 2.23 

15 2.16  15 1.49 54 2.18 

16 2.00  16 1.79 55 2.19 

17 2.07  17 2.23 56 2.22 

18 2.11  18 1.73 57 2.23 

19 2.15  19 1.83 58 2.21 

20 2.21  20 1.62 59 2.40 

21 2.30  21 1.92 60 1.99 

22 2.46  22 2.02 Av 1.94 

23 2.58  23 2.03 S 0.33 

24 2.66  24 1.91 S2 0.11 

25 2.78  25 1.97 S2/n 0.0019 

26 2.83  26 1.99   

27 2.84  27 2.03 Upper bound 1.96 

28 2.89  28 2.85 Lower Bound -1.96 

29 2.83  29 1.77   

30 2.81  30 1.89                     t 7.09 

31 2.83  31 1.90   

32 2.91  32 1.99   

33 2.55  33 2.16   

34 2.78  34 2.17   

35 2.16  35 2.13   

Av 2.50  36 2.30   

S 0.40  37 0.88   

S2 0.16  38 1.20   

S2/n 0.0045  39 1.62   
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BH 4348                 

t1(Months) sample1 t1(Months)  sample1   t2(months) sample2 t2(months) sample2 

1 3.45 38 6.51   1 6.03 38 2.37 

2 3.81 39 6.67   2 5.47 39 3.45 

3 4.34 40 6.65   3 5.45 40 3.73 

4 4.52 41 6.71   4 4.93 41 4 

5 4.73 42 6.79   5 4.97 42 4.28 

6 4.82 43 6.86   6 5.12 43 4.26 

7 4.88 44 6.87   7 5.25 44 4.38 

8 4.95 45 6.99   8 5.26 45 4.49 

9 5.04 46 9.1   9 5.36 46 4.75 

10 5.17 47 7.5   10 5.53 47 4.97 

11 5.32 48 7.47   11 5.8 48 5.14 

12 5.53 49 6.95   12 5.95 49 5.32 

13 5.62 50 2.55   13 6.17 50 5.32 

14 5.68 51 4.57   14 4 51 5.46 

15 5.74 52 4.815   15 4.16 52 5.62 

16 5.83 53 5.06   16 4.35 53 5.84 

17 5.92 54 5.35   17 4.53 54 5.95 

18 5.99 55 5.5   18 4.61 55 5.59 

19 5.99 56 5.62   19 4.7 56 6.05 

20 6.05 57 5.73   20 4.72 57 6.05 

21 6.04 58 5.88   21 4.87 58 6.17 

22 6.2 59 6.23   22 5.1 59 6.33 

23 6.23 60 6.42   23 5.17 Av 5.12 

24 6.37 61 6.67   24 5.16 S 0.75 

25 6.29 62 6.89   25 5.28 S2 0.56 

26 6.26 63 7.06   26 5.46 S2/n 0.009 

27 5.99 64 7.19   27 5.51     

28 5.96 65 7.45 
  

28 5.57 
Upper 

bound 
1.96 

29 6.04 66 7.46 
  

29 5.31 
Lower 

Bound 
-1.96 

30 6.16 67 7.35   30 5.3     

31 6.16 68 7.36 
  

31 5.51 
                    

t 
6.08 

32 6.22 69 7.45   32 5.39     

33 6.29 70 7.14   33 5.51     

34 6.46 71 7.16   34 5.63     

35 6.6 72 6.6   35 5.74     

36 6.67       36 5.88     

37 6.59       37 4.13     

   Av 6.09        

   S 1.058        

   S2 1.119        

    S2/n 0.016           
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BH4165                 

t1(Months) sample1 t1(Months) sample1   t2(months) sample2 t2(months) sample2 

1 4.89 36 4.44   1 7.15 36 2.96 

2 4.86 37 4.46   2 6.23 37 4.5 

3 5.12 38 4.58   3 6.31 38 3.06 

4 5.25 39 4.83   4 4.5 39 3.39 

5 5.27 40 5.29   5 5.55 40 3.62 

6 5.29 41 5.57   6 4.42 41 4.5 

7 5.28 42 5.98   7 4.37 42 1.63 

8 5.07 43 6.39   8 4.05 43 2.56 

9 4.78 44 6.64   9 4.07 44 2.64 

10 4.83 45 6.73   10 4.06 45 2.66 

11 5.01 46 6.79   11 3.97 46 2.74 

12 4.68 47 6.89   12 3.96 47 3.05 

13 4.62 48 6.93   13 4.02 48 3.27 

14 4.71 49 7   14 4.27 49 3.29 

15 5.1 50 7.15   15 4.55 50 3.45 

16 4.5 Av 5.4   16 4.73 51 3.25 

17 5.54 S 0.938   17 4.82 52 3.32 

18 5.64 S2 0.88   18 2.81 53 3.5 

19 5.57 S2/n 0.018   19 3.12 Av 3.71 

20 5.75     20 3.37 S 0.99 

21 5.65     21 3.45 S2 0.99 

22 5.52     22 3.26 S2/n 0.02 

23 5.68     23 3.26    

24 5.65 
    

24 3.25 
Upper 

bound 
1.96 

25 5.72 
    

25 3.35 
Lower 

Bound 
-1.96 

26 6.1     26 3.51     

27 6.22     27 3.57 t 8.89 

28 6.37     28 3.1    

29 6.58     29 3.25    

30 5.74     30 3.39    

31 2.28     31 3.5    

32 3.83     32 3.15    

33 4.5     33 2.83    

34 4.28     34 2.94    

35 4.43       35 3.03     
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BH4886           

t1(Months) sample1         

1 5.13 36 8.72 71 7.29 

2 5.72 37 8.74 72 8.75 

3 6.1 38 8.83 73 7.74 

4 6.36 39 8.8 74 7.59 

5 6.44 40 8.79 75 7.33 

6 6.36 41 8.95 76 7.35 

7 6.38 42 9.11 77 7.32 

8 6.53 43 9.07 78 7.18 

9 6.7 44 9.21 79 7.17 

10 6.87 45 9.31 80 7.2 

11 7.07 46 9.37 81 7.5 

12 7.2 47 9.36 82 7.83 

13 7.29 48 8.85 83 8.29 

14 7.16 49 6.46 84 8.37 

15 7.5 50 7.15 Av 7.91 

16 7.67 51 7.29 S 0.95 

17 7.66 52 7.28 S2 0.91 

18 7.63 53 7.37 S2/n 0.01 

19 7.62 54 7.27     

20 7.68 55 7.29     

21 7.9 56 7.38     

22 7.97 57 7.68     

23 8.18 58 8.1     

24 8.09 59 8.35     

25 8.13 60 8.68     

26 8.05 61 8.9     

27 7.84 62 9.06     

28 8.07 63 9.12     

29 8.13 64 9.24     

30 8 65 9.19     

31 7.99 66 9.17     

32 8.07 67 9.2     

33 8.37 68 9.33     

34 8.52 69 9     

35 8.72 70 9.16     
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t2(months) sample2     

1 6.52 36 6.28 

2 6.42 37 6.41 

3 6.55 38 6.55 

4 6.61 39 6.45 

5 6.45 40 6.38 

6 6.41 41 6.4 

7 6.34 42 6.45 

8 6.35 43 6.7 

9 6.55 44 6.92 

10 6.68 Av 6.1 

11 6.31 S 0.88 

12 6.4 S2 0.78 

13 6.7 S2/n 0.02 

14 6.81     
15 6.55 Upper bound 1.96 

16 6.09 Lower Bound -1.96 

17 6.07     

18 6.23 t 10.72 

19 6.09    

20 7.29    

21 6.45    

22 6.65    

23 6.88    

24 2.67    

25 3.4    

26 4.42    

27 5.04    

28 5.05    

29 5.09    

30 5.13    

31 5.55    

32 5.85    

33 6.02    

34 6.16    

35 6.25     
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BH4164                 

t1(Months) sample1       t2(months) sample2     

1 3.24 36 6.04   1 4.58 36 3.05 

2 3.55 37 5.89   2 4.72 37 3.35 

3 3.8 38 5.82   3 4.3 38 3.69 

4 4.04 39 5.95   4 4.31 39 4.71 

5 4.24 40 5.93   5 4.53 40 4.71 

6 4.28 41 5.97   6 4.66 41 3.86 

7 4.32 42 6.05   7 4.7 42 3.94 

8 4.38 43 6.13   8 4.79 43 3.95 

9 4.49 44 6.15   9 4.96 44 4.07 

10 4.62 45 6.24   10 5.21 45 4.63 

11 4.96 46 6.64   11 5.33 46 4.53 

12 4.94 47 6.64   12 5.54 47 4.63 

13 4.99 48 6.69   13 3.78 48 4.8 

14 5.11 49 6.15   14 3.6 49 4.75 

15 4.87 50 4.55   15 3.87 50 4.9 

16 5.11 51 4.69   16 4.1 51 5.03 

17 5.24 52 5.11   17 4.14 52 5.22 

18 5.28 53 4.75   18 4.25 53 5.28 

19 5.3 54 4.89   19 4.25 54 5.31 

20 5.37 55 4.98   20 4.41 55 5.34 

21 5.37 56 5.08   21 4.62 56 5.4 

22 5.47 57 5.16   22 4.69 57 5.46 

23 5.51 58 5.3   23 4.63 58 5.63 

24 5.66 59 5.62   24 4.73 59 5.54 

25 5.4 60 5.8   25 4.91 Av 4.66 

26 5.51 61 5.99   26 4.96 S 0.568 

27 5.28 62 6.18   27 4.93 S2 0.322 

28 5.26 63 6.35   28 4.7 S2/n 0.005 

29 5.34 64 6.43   29 4.72     

30 5.24 65 6.53   30 4.84 Upper bound 1.96 

31 5.47 66 6.56   31 4.8 Lower Bound -1.96 

32 5.52 67 6.56   32 5.11     

33 5.59 68 6.58   33 5.04 t 6.75 

34 5.75 69 6.66   34 5.18    

35 5.88 70 6.34   35 5.28    

   71 6.39        

   72 5.11        

   73 5.92        

   Av 5.45        

   S 0.78        

   S2 0.61        

    S2/n 0.01           
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BH4371                 

t1(Months) sample1       t2(months) sample2     

1 2.61 36 5.19   1 5.66 36 4.28 

2 2.85 37 5.15   2 5.42 37 4.42 

3 2.99 38 5.09   3 5.18 38 4.52 

4 3.3 39 5.19   4 4.1 39 2.79 

5 3.47 40 5.2   5 4.06 40 2.7 

6 3.54 41 5.23   6 3.6 41 2.95 

7 3.56 42 5.32   7 3.67 42 3.01 

8 3.63 43 5.38   8 3.8 43 3.08 

9 3.72 44 5.4   9 3.92 44 3.14 

10 3.85 45 5.48   10 3.95 45 3.2 

11 3.98 46 5.77   11 4.05 46 3.22 

12 4.15 47 5.9   12 4.21 47 3.31 

13 4.14 48 5.95   13 4.47 48 4.63 

14 4.135 49 5.45   14 4.6 49 3.74 

15 4.13 50 3.95   15 4.83 50 3.86 

16 4.36 51 3.94   16 3.25 51 4.02 

17 4.48 52 3.97   17 3.12 52 4.01 

18 4.54 53 4   18 3.24 53 4.13 

19 4.55 54 4.14   19 3.4 54 4.26 

20 4.575 55 4.22   20 3.47 55 4.45 

21 4.6 56 4.31   21 3.55 56 4.54 

22 4.72 57 4.4   22 3.51 57 4.56 

23 4.75 58 4.53   23 3.64 58 4.62 

24 4.91 59 4.86   24 3.93 59 4.65 

25 4.86 60 5.05   25 3.95 60 4.72 

26 4.76 61 5.25   26 3.9 61 4.87 

27 4.54 62 5.47   27 4.02 62 4.81 

28 4.51 63 5.61   28 4.16 Av 4.04 

29 4.59 64 5.71   29 4.23 S 0.57 

30 4.69 65 5.8   30 4.22 S2 0.33 

31 4.73 66 5.85   31 3.97 S2/n 0.01 

32 4.77 67 5.84   32 3.98     

33 4.84 68 5.86 
  

33 4 
Upper 

bound 
1.96 

34 4.99 69 5.93 
  

34 4.05 
Lower 

Bound 
-1.96 

35 5.13 70 5.63   35 4.165     

    71 5.66       t 5.67 

    Av 4.70         

   S 0.80         

   S2 0.64         

    S2/n 0.01           
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BHZ6424                 

t1(Months) sample1       t2(months) sample2     

1 23 36 26.6   1 25.21 36 21.37 

2 23.04 37 26.72   2 24.85 37 21.57 

3 23.23 38 26.63   3 23.77 38 21.75 

4 23.42 39 26.73   4 23.81 39 21.78 

5 23.64 40 26.71   5 24.03 40 21.82 

6 23.74 41 26.8   6 24.41 41 21.85 

7 23.83 42 26.94   7 24.47 42 22.02 

8 24.02 43 27.13   8 24.69 43 22.06 

9 24.15 44 27.17   9 24.84 44 22.25 

10 24.26 45 27.33   10 25.07 45 22.46 

11 24.4 46 27.46   11 24.26 46 22.67 

12 24.55 47 27.62   12 25.61 47 22.83 

13 24.67 48 27.69   13 21.49 48 22.99 

14 24.62 49 27.64   14 19.96 49 23.03 

15 24.56 50 29.39   15 21.01 50 23.21 

16 24.77 51 26.82   16 21.23 51 23.4 

17 24.96 52 26.78   17 21.36 52 23.66 

18 25.08 53 26.74   18 21.58 53 23.87 

19 25.21 54 26.94   19 21.71 54 23.97 

20 25.4 55 27.1   20 22.02 55 24.21 

21 25.39 56 27.22   21 22.3 56 24.29 

22 25.6 57 27.36   22 22.35 57 24.24 

23 25.65 58 27.46   23 22.43 58 24.62 

24 25.78 59 27.64   24 22.56 59 24.62 

25 25.6 60 27.76   25 22.89 Av 23.14 

26 25.67 61 27.97   26 22.99 S 1.26 

27 25.5 62 28.11   27 23.24 S2 1.59 

28 25.6 63 28.24   28 23.2 S2/n 0.03 

29 25.73 64 28.34   29 23.32    

30 25.93 65 28.46   30 23.5 Upper bound 1.96 

31 25.99 66 28.6   31 23.74 Lower Bound -1.96 

32 26.15 67 28.7   32 24.01     

33 26.26 68 28.79   33 24.27 t 12.72 

34 26.39 69 28.92   34 24.17    

35 26.5 70 28.69   35 24.3    

   71 28.54        

   72 27.83        

   73 27.11        

   Av 26.31        

   S 1.61        

   S2 2.59        

    S2/n 0.04           
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BH4995                   

t1(Months) sample1       t2(months) sample2       

1 8.82 36 18   1 21.4 36   10.95 

2 9.46 37 18.25   2 14.7 37   11.51 

3 10.37 38 16.71   3 19.85 38   11.82 

4 11.16 39 17.06   4 12.57 39   7.25 

5 11.94 40 14.7   5 13.19 40   7.14 

6 12.42 41 17.49   6 12.95 41   7.74 

7 13.05 42 17.85   7 12.78 42   9.27 

8 13.72 43 18.37   8 14.75 43   9.75 

9 14.31 44 18.53   9 15.82 44   9.94 

10 14.65 45 18.86   10 16.05 45   10.42 

11 15.06 46 19.12   11 16.53 46   12 

12 15.45 47 19.32   12 16.89 47   11.34 

13 15.79 48 19.49   13 17.32 48   11.65 

14 14.7 49 16.33   14 17.65 49   11.92 

15 14.6 50 12.62   15 18.11 50   12.09 

16 13.59 51 14.25   16 7.19 51   12.16 

17 15.92 52 14.7   17 7.57 52   14.7 

18 16.36 53 15.99   18 9.04 53   13 

19 16.72 54 16.93   19 10.23 54   13.46 

20 17.2 55 17.51   20 10.8 55   13.66 

21 17.23 56 18.01   21 11.58 56   14.2 

22 17.77 57 18.32   22 11.92 57   14.95 

23 17.94 58 18.58   23 12.9 58   14.68 

24 18.17 59 18.97   24 13.27 59   15.06 

25 16.86 60 19.16   25 13.4 Av 12.36 

26 16.54 61 19.53   26 10.25 S 3.21 

27 16.32 62 19.76   27 10.67 S2 10.31 

28 14.51 63 19.96   28 10.5 S2/n 0.17 

29 15.26 64 20.21   29 10.69     

30 15.95 65 20.4   30 8.6 Upper bound 1.96 

31 16.27 66 20.65   31 7.46 Lower Bound -1.96 

32 16.84 67 20.83   32 8.19     

33 17.18 68 21   33 9.04 t 8.19 

34 17.54 69 21.21   34 10.08     

35 17.78 70 21.29   35 14.7     

   71 21.4        

   Av 16.74        

   S 2.81        

   S2 7.92        

    S2/n 0.11             
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BH6423                 

t1(Months) sample1       t2(months) sample2     

1 3.75 36 8.94   1 3.78 36 3.1 

2 4.54 37 8.98   2 3.98 37 2.98 

3 4.82 38 9.56   3 3.08 38 3.47 

4 5.46 39 10.53   4 3.47 39 3.41 

5 6.04 40 10.67   5 3.92 40 3.68 

6 6.62 41 10.99   6 4.73 41 3.74 

7 6.88 42 11.45   7 5.06 42 4.22 

8 7.2 43 11.79   8 5.68 43 4.8 

9 7.7 44 11.98   9 6.28 44 5.36 

10 7.38 45 11.72   10 6.95 45 6.81 

11 7.06 46 7.75   11 7.29 46 6.16 

12 5.82 47 7.6   12 8.03 47 5.74 

13 6.93 48 7.06   13 2.53 48 6.12 

14 7.49 49 8.45   14 2.46 49 6.6 

15 8.15 50 9.27   15 2.63 50 7.23 

16 8.52 51 9.91   16 3.35 51 7.65 

17 9.03 52 10.5   17 3.21 52 7.86 

18 9.16 53 10.89   18 3.61 53 8.27 

19 9.08 54 11.01   19 3.69 54 8.39 

20 8.81 55 11.25   20 4.31 55 8.36 

21 9.05 56 11.54   21 4.83 56 8.42 

22 6.87 57 11.75   22 5.05 57 7.45 

23 6.28 58 11.91   23 3.95     

24 5.58 59 12.02   24 4.21 Av 5.08 

25 4.88 60 11.99   25 4.43 S 1.75 

26 5.22 61 12.24   26 4.5 S2 3.06 

27 5.72 62 12.61   27 3.87 S2/n 0.05 

28 6.17 63 12.68   28 3.4    

29 7.17 64 12.94   29 3.63 Upper bound 1.96 

30 7.73 65 13.27   30 4.04 Lower Bound -1.96 

31 8.4 66 12.19   31 4.66     

32 8.82 67 11.66   32 7.06 t 10.22 

33 9.4 68 7.06176   33 5.58  

34 9.3 69 9.56   34 6.04 
 

35 8.36       35 6.27 
 

   Av 8.89     

   S 2.42     

   S2 5.88     

    S2/n 0.09         
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Z4401         

t1(Months) sample1   t2(months) sample2     

1 6.45   1 5.86 36 6.42 

2 6.7   2 5.17 37 4.25 

3 6.7   3 5.11 38 4.46 

4 6.74   4 4.7 39 4.54 

5 6.8   5 4.76 40 4.62 

6 6.98   6 5.01 41 4.7 

7 6.93   7 5.24 42 4.88 

8 7.12   8 5.29 43 4.85 

9 7.29   9 5.41 44 5.05 

10 7.57   10 5.59 45 5.39 

11 7.6   11 5.86 46 5.65 

12 7.04   12 8 47 5.7 

13 6.23   13 6.06 48 5.9 

14 5.43   14 4.13 49 4.8 

15 5.39   15 5.35 50 6.07 

16 5.34   16 4.27 51 6.21 

17 5.57   17 4.45 52 6.34 

18 5.68   18 4.6 53 6.47 

19 5.83   19 4.73 54 7.22 

20 5.9   20 4.8 55 6.64 

21 6.03   21 5.01 56 6.65 

22 6.4   22 5.17 57 6.8 

23 6.51   23 5.21 58 6.92 

24 6.78   24 5.1 Av 5.52 

25 6.9   25 5.2 S 0.89 

26 7.14   26 5.55 S2 0.79 

27 7.21   27 5.52 S2/n 0.01 

28 7.39   28 5.58     

29 7.41   29 5.25 Upper bound 1.96 

30 7.14   30 5.31 Lower Bound -1.96 

31 7.47   31 5.5     

32 7.59   32 5.44 t 35.37 

33 7.25   33 6.84    

34 7.23   34 8.23    

35 6.54   35 6.39    

Av 6.69     

S 0.68     

S2 0.46     

S2/n 0.01       
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BH4887                 

t1(Months) sample1       t2(months) sample2     

1 2.42 36 3.02   1 5.14 37 2.91 

2 2.43 37 3.25   2 3.28 38 2.53 

3 2.61 38 3.44   3 3.8 39 2.55 

4 2.72 39 3.24   4 2.91 40 2.7 

5 2.91 40 3.28   5 2.91 41 2.05 

6 2.7 41 3.32   6 2.16 42 2.5 

7 2.72 42 3.27   7 2.2 43 2.28 

8 2.86 43 3.26   8 2.15 44 2.47 

9 2.94 44 3.7   9 2.25 45 2.39 

10 2.81 45 3.54   10 2.35 46 2.42 

11 3.12 46 3.72   11 2.42 47 2.55 

12 3.1 47 4.33   12 2.43 48 2.62 

13 2.91 48 2.78   13 2.51 49 2.62 

14 2.76 49 1.36   14 2.71 50 2.71 

15 3.08 50 2.12   15 3.02 51 2.6 

16 3.17 51 2.91   16 3.19 52 2.61 

17 3.1 52 2.48   17 2.91 53 2.72 

18 3.02 53 2.67   18 1.9 54 2.83 

19 2.99 54 2.73   19 2 55 2.8 

20 3 55 2.78   20 2.2 56 2.8 

21 3.17 56 2.89   21 2.3 57 2.82 

22 3.28 57 3.11   22 2.6 58 2.84 

23 3.55 58 3.37   23 2.27 59 2.86 

24 2.94 59 3.63   24 2.3 60 3.03 

25 2.94 60 4.02   25 2.37 Av 2.593 

26 2.68 61 4.54   26 2.48 S 0.472 

27 2.43 62 4.78   27 2.51 S2 0.222 

28 2.62 63 4.67   28 2.3 S2/n 0.004 

29 2.72 64 4.78   29 2.34    

30 2.71 65 4.94   30 2.42 
Upper 

bound 
1.96 

31 2.76 66 4.95   31 2.5 
Lower 

Bound 
-1.96 

32 2.83 67 5.01   32 2.28     

33 3.1 Av 3.188   33 2.24 t -5.64 

34 3.35 S 0.705   34 2.32    

35 3.25 S2 0.496   35 2.35    

    S2/n 0.007           
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APPENDIX C - ACF AND PACF for different borehole series 

 

 

                            Fig B1: ACF Plot for BH4886 

 

 

                             Fig B2: PACF Plot for BH4886 
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                           Fig B3: ACF Plot for BH4887 

 

 

Fig B4: PACF Plot for BH4887 
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Fig B5: ACF Plot for BH4164 

 

Fig B6: PACF Plot for BH4164 
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Fig B7: ACF Plot for BH4165 

 

Fig B8: PACF Plot for BH4165 
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Fig B9: ACF Plot for BH6424 

 

 

Fig B10: PACF Plot for BH6424 
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Fig B11: ACF Plot for Z4401 

 

Fig B12: PACF Plot for Z4401 
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Fig B13: ACF Plot for BH4371 

 

Fig B14: PACF Plot for BH4371 
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Fig B15: ACF Plot for BH4341 

 

Fig B16: PACF Plot for BH4341 
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Fig B17: ACF Plot for BH4163 

 

 

Fig B18: PACF Plot for BH4163 
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Fig B19: ACF Plot for BH4348 

 

Fig B20: PACF Plot for BH4348 
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Fig B21: ACF Plot for BH4973 

 

 

Fig B22: PACF Plot for BH4973 
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Fig B23: ACF Plot for BH4995 

 

Fig B24: PACF Plot for BH4995 
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Fig B25: ACF Plot for BH6423 

 

Fig B26: PACF Plot for BH6423 
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APPENDIX D – Thomas Fiering models fitted at different boreholes 

 Table D1: BH 4341 

Month S Mean Z Correlation 

 

Thomas-Fiering Model 

January 0.63 1.65 0.43 -0.2 

 

   𝑋𝑗𝑎𝑛 = 1.65 − 0.6(𝑋𝑑𝑒𝑐 − 2.16) + 0.98𝑍1 

February 0.37 1.45 -2.12 0.35 
 𝑋𝐹𝑒𝑏 = 1.45 + 0.21(𝑋𝑗𝑎𝑛 − 1.65) + 0.34𝑍 2 

March  0.24 1.74 1.08 0.91 
𝑋𝑚𝑎𝑟 = 1.74 + 0.59(𝑋𝑓𝑒𝑏 − 1.45) + 0.234 3 

April 0.58 1.99 -0.27 0.79 

𝑋𝐴𝑝𝑟 = 1.99 + 1.91(𝑋𝑚𝑎𝑟 − 1.74) + 0.35𝑍 4 

May 0.27 1.86 -2.17 -0.09 
𝑋𝑚𝑎𝑦 = 1.86 − 0.04(𝑋𝐴𝑝𝑟 − 1.99) + 0.27𝑍 5 

June 0.18 1.80 0.02 0.165 
𝑋𝑗𝑢𝑛 = 1.8 + 0.11(𝑋𝑚𝑎𝑦 − 1.86) + 0.19𝑍 6 

July 0.15 1.86 -0.72 0.98 
  𝑋𝑗𝑢𝑙 = 1.86 + 0.82(𝑋𝑗𝑢𝑛 − 1.8) + 0.03𝑍 7   

 

August 0.36 1.92 0.21 0.87 
𝑋𝐴𝑢𝑔 = 1.92 + 2.09(𝑋𝑗𝑢𝑙 − 1.86) + 0.18𝑍 8 

September 0.19 1.98 -0.56 0.73 
 𝑋𝑠𝑒𝑝𝑡 = 1.98 + 0.39(𝑋𝐴𝑢𝑔 − 1.92) + 0.13𝑍 9 

October 0.12 2.08 0.46 0.96 
𝑋𝑜𝑐𝑡 =   2.08 − 0.61(𝑋𝑠𝑒𝑝𝑡 − 1.98) + 0.03𝑍 10 

November 0.14 2.11 -1.81 0.89 
𝑋𝑛𝑜𝑣 = 2.11 + 1.04(𝑋𝑜𝑐𝑡 − 2.08) + 0.06𝑍 11 

December 0.21 2.16 1.52 0.85 

 𝑋𝑑𝑒𝑐 = 2.16 + 1.28(𝑋𝑛𝑜𝑣 − 2.11) + 0.11𝑍 12 
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Table D2:BH6423 

Month S Mean Z Correlation Thomas-Fiering Model 

February 0.97 3.58 -0.39 -0.04 𝑋𝑓𝑒𝑏 = 3.58 − 0.02(𝑋𝑗𝑎𝑛 − 5.84) + 0.97Z2 

March  1.06 3.65 -0.23 0.99 𝑋𝑚𝑎𝑟 = 3.65 + 1.08(𝑋𝑓𝑒𝑏 − 3.58) + 0.15Z 3 

April 0.63 3.19 -0.09 0.91 𝑋𝑎𝑝𝑟 = 3.19 + 0.54(𝑋𝑚𝑎𝑟 − 3.65) + 0.26𝑍4 

May 0.06 3.41 -0.46 0.27 𝑋𝑚𝑎𝑦 = 3.41 + 0.03(𝑋𝑎𝑝𝑟 − 3.19) + 0.06𝑍5 

June 0.36 3.59 1.56 0.98 𝑋𝑗𝑢𝑛 = 3.59 + 5.88(𝑋𝑚𝑎𝑦 − 3.41) + 0.07𝑍6 

July 0.57 4.13 -1.09 0.97 𝑋𝑗𝑢𝑙 = 4.13 + 1.54(𝑋𝑗𝑢𝑛 − 3.59) + 0.14𝑍7 

August 0.70 4.47 0.86 0.93 𝑋𝑎𝑢𝑔 = 4.47 + 1.14(𝑋𝑗𝑢𝑙 − 4.13) + 0.26𝑍8 

September 1.38 5.68 0.38 0.67 𝑋𝑠𝑒𝑝𝑡 = 5.68 + 1.32(𝑋𝑎𝑢𝑔 − 4.47) + 1.02𝑍9 

October 0.73 5.56 0.71 0.52 𝑋𝑜𝑐𝑡 =   5.56 + 0.28(𝑋𝑠𝑒𝑝𝑡 − 5.68) + 0.62𝑍10 

November 0.95 6.01 0.42 0.99 𝑋𝑛𝑜𝑣 = 6.01 + 1.29(𝑋𝑜𝑐𝑡 − 5.56) + 0.13𝑍11 

December 1.71 5.84 1.45 0.98 𝑋𝑑𝑒𝑐 = 5.84 + 1.76(𝑋𝑛𝑜𝑣 − 6.01) + 0.34𝑍12 

January 2.59 5.11 0.90 0.57 𝑋𝑗𝑎𝑛 = 5.11 − 0.86(𝑋𝑑𝑒𝑐 − 5.84) + 2.13𝑍1 

 

Table D3:BH4165 

Month S Mean Z Correlation 
Thomas-Fiering Model 

January 1.13 3.56 1.45 0.83 
𝑋𝑗𝑎𝑛 = 3.57 + 1.13(𝑋𝑑𝑒𝑐 − 3.82) + 0.63𝑍 1 

February 0.90 2.61 0.90 0.46 
𝑋𝐹𝑒𝑏 = 2.61 + 0.36(𝑋𝑗𝑎𝑛 − 3.57) + 0.8𝑍 2 

March  0.64 3.66 0.44 -0.11 
𝑋𝑚𝑎𝑟 = 3.66 − 0.08(𝑋𝑓𝑒𝑏 − 2.61) + 0.64 3 

April 0.47 3.52 -2.12 0.86 
𝑋𝐴𝑝𝑟 = 3.52 + 0.63(𝑋𝑚𝑎𝑟 − 3.66) + 0.24𝑍 4 

May 0.62 3.45 1.09 0.96 
𝑋𝑚𝑎𝑦 = 3.45 + 1.27(𝑋𝐴𝑝𝑟 − 3.52) + 0.17𝑍 5 

June 0.58 3.42 -0.28 0.97 
𝑋𝑗𝑢𝑛 = 3.42 + 0.9(𝑋𝑚𝑎𝑦 − 3.45) + 0.14𝑍 6 

July 0.49 3.42 -2.17 0.99 
𝑋𝑗𝑢𝑙 = 3.42 + 0.84(𝑋𝑗𝑢𝑛 − 3.42) + 0.07𝑍 7 

August 0.51 3.39 0.02 0.99 
𝑋𝐴𝑢𝑔 = 3.39 + 1.04(𝑋𝑗𝑢𝑙 − 3.42) + 0.08𝑍 8 

September 0.58 3.96 -0.72 -0.19 
𝑋𝑠𝑒𝑝𝑡 = 3.96 − 0.21(𝑋𝐴𝑢𝑔 − 3.39) + 0.57𝑍 9 

October 0.61 3.61 0.21 -0.28 
𝑋𝑜𝑐𝑡 =   3.61 − 0.3(𝑋𝑠𝑒𝑝𝑡 − 3.96) + 0.59𝑍 10 

November 0.62 3.84 -0.56 0.97 
𝑋𝑛𝑜𝑣 = 3.83 + 0.99(𝑋𝑜𝑐𝑡 − 3.61) + 0.15𝑍 11 

December 0.83 3.82 0.47 0.9 
𝑋𝑑𝑒𝑐 = 3.82 + 1.2(𝑋𝑛𝑜𝑣 − 3.83) + 0.36𝑍 12 
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Table D4:BH4164 

Month S Mean Z Correlation 
Thomas-Fiering Model 

January 
1.05 4.53 0.904 0.95 𝑋𝑗𝑎𝑛 = 4.53 + 2.38(𝑋𝑑𝑒𝑐 − 4.97)

+ 0.33𝑍 1 

February 
0.68 4.16 0.437 0.51 𝑋𝐹𝑒𝑏 = 4.16 + 0.33(𝑋𝑗𝑎𝑛 − 4.53)

+ 0.58𝑍 2 

March  
0.67 4.24 -2.12 0.97 𝑋𝑚𝑎𝑟 = 4.24 + 0.96(𝑋𝑓𝑒𝑏 − 4.16)

+ 0.16𝑍 3 

April 
0.48 4.45 1.08 0.03 𝑋𝐴𝑝𝑟 = 4.45 + 0.02(𝑋𝑚𝑎𝑟 − 4.24)

+ 0.48𝑍 4 

May 
0.43 4.46 -0.27 0.99 𝑋𝑚𝑎𝑦 = 4.46 + 0.89(𝑋𝐴𝑝𝑟 − 4.45)

+ 0.06𝑍 5 

June 
0.55 4.31 -2.17 0.99 𝑋𝑗𝑢𝑛 = 4.31 + 1.27(𝑋𝑚𝑎𝑦 − 4.46)

+ 0.08𝑍 6 

July 
0.53 4.42 0.02 0.98 𝑋𝑗𝑢𝑙 = 4.42 + 094(𝑋𝑗𝑢𝑛 − 3.42)

+ 0.07𝑍 7 

August 
0.53 4.43 -0.72 0.93 𝑋𝐴𝑢𝑔 = 4.43 + 1.04(𝑋𝑗𝑢𝑙 − 4.42)

+ 0.11𝑍 8 

September 
0.53 4.59 0.21 0.96 𝑋𝑠𝑒𝑝𝑡 = 4.59 + 0.96(𝑋𝐴𝑢𝑔 − 4.43)

+ 0.15𝑍 9 

October 
0.35 4.81 -0.55 0.98 𝑋𝑜𝑐𝑡 =  4.81 + 0.65(𝑋𝑠𝑒𝑝𝑡 − 4.59)

+ 0.07𝑍 10 

November 
0.44 4.90 0.465 -0.21 𝑋𝑛𝑜𝑣 = 4.90 − 0.26(𝑋𝑜𝑐𝑡 − 4.81)

+ 0.43𝑍 11 

December 
0.42 4.97 -1.81 -0.433 𝑋𝑑𝑒𝑐 = 4.97 − 0.41(𝑋𝑛𝑜𝑣 − 4.90)

+ 0.38𝑍 12 
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Table D5:BH4163 

Month S Mean Z Correlation 

 

Thomas-Fiering Model 

January 
0.76 2.04 -0.09 0.15 𝑋𝑗𝑎𝑛 = 2.04 + 0.28(𝑋𝑑𝑒𝑐 − 2.85) + 0.75𝑍 1 

February 
0.34 1.63 -0.46 -0.49 𝑋𝐹𝑒𝑏 = 1.63 − 0.22(𝑋𝑗𝑎𝑛 − 2.04) + 0.3𝑍 2 

March  
0.29 1.92 1.56 0.87 𝑋𝑚𝑎𝑟 = 1.92 + 0.74(𝑋𝑓𝑒𝑏 − 1.63) + 0.14𝑍 3 

April 
0.23 1.88 -1.08 0.21 𝑋𝐴𝑝𝑟 = 1.88 + 0.17(𝑋𝑚𝑎𝑟 − 1.92) + 0.22𝑍 4 

May 
0.30 2.01 0.86 0.94 𝑋𝑚𝑎𝑦 = 2.01 + 1.23(𝑋𝐴𝑝𝑟 − 1.88) + 0.1𝑍 5 

June 
0.33 2.05 0.38 0.81 𝑋𝑗𝑢𝑛 = 2.05 + 0.89(𝑋𝑚𝑎𝑦 − 2.01) + 0.19𝑍 6 

July 
0.32 2.25 0.71 0.98 𝑋𝑗𝑢𝑙 = 2.25 + 0.95(𝑋𝑗𝑢𝑛 − 2.05) + 0.06𝑍 7 

August 
0.42 2.32 0.421 0.95 𝑋𝐴𝑢𝑔 = 2.32 + 1.25(𝑋𝑗𝑢𝑙 − 2.25) + 0.11𝑍 8 

September 
0.42 2.76 1.454 0.08 𝑋𝑠𝑒𝑝𝑡 = 2.76 + 0.08(𝑋𝐴𝑢𝑔 − 2.32) + 0.99𝑍 9 

October 
0.33 2.67 0.904 0.44 𝑋𝑜𝑐𝑡 =  2.67 + 0.34(𝑋𝑠𝑒𝑝𝑡 − 2.76) + 0.3𝑍 10 

November 
0.88 3.07 0.437 0.33 𝑋𝑛𝑜𝑣 = 3.07 − 0.88(𝑋𝑜𝑐𝑡 − 2.67) + 0.42𝑍 11 

December 
0.41 2.85 -2.12 0.79 𝑋𝑑𝑒𝑐 = 2.85 − 0.37(𝑋𝑛𝑜𝑣 − 3.07) + 0.25𝑍 12 
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Table D6:BHZ6424 

Month S Mean Z Correlation 

Thomas-Fiering Model 

January 1.79 23.13 1.454 0.23 

𝑋𝑗𝑎𝑛 = 23.13 + 0.52(𝑋𝑑𝑒𝑐 − 23.46) + 1.74𝑍1 

February 1.74 22.79 0.904 0.72 

𝑋𝐹𝑒𝑏 = 22.79 + 0.70(𝑋𝑗𝑎𝑛 − 23.13) + 1.21𝑍2 

March  2.06 22.39 0.437 0.93 

𝑋𝑚𝑎𝑟 = 22.39 + 1.10(𝑋𝑓𝑒𝑏 − 22.79) + 0.14𝑍3 

April 1.28 22.45 -2.12 0.97 

𝑋𝐴𝑝𝑟 = 22.45 + 0.6(𝑋𝑚𝑎𝑟 − 22.39) + 0.31𝑍4 

May 1.20 22.51 1.085 0.99 

𝑋𝑚𝑎𝑦 = 22.51 + 0.92(𝑋𝐴𝑝𝑟 − 22.45) + 0.17𝑍5 

June 1.25 22.64 -0.277 0.99 

𝑋𝑗𝑢𝑛 = 22.64 + 1.03(𝑋𝑚𝑎𝑦 − 22.51) + 0.18𝑍6 

July 1.31 22.88 -2.17 0.99 

𝑋𝑗𝑢𝑙 = 22.88 + 1.03(𝑋𝑗𝑢𝑛 − 22.64) + 0.18𝑍7 

August 1.32 23.00 0.018 0.997 

𝑋𝐴𝑢𝑔 = 23 + 1.00(𝑋𝑗𝑢𝑙 − 22.88) + 0.10𝑍8 

September 1.31 23.24 -0.722 0.99 

𝑋𝑠𝑒𝑝𝑡 = 23.24 + 4.05(𝑋𝐴𝑢𝑔 − 23) + 0.18𝑍9 

October 1.28 23.47 0.21 0.99 

𝑋𝑜𝑐𝑡 =  23.47 + 0.97(𝑋𝑠𝑒𝑝𝑡 − 23.24) + 0.18𝑍10 

November 1.28 23.57 -0.556 0.993 

𝑋𝑛𝑜𝑣 = 23.57 + 0.99(𝑋𝑜𝑐𝑡 − 23.47) + 0.15𝑍11 

December 0.97 23.46 0.465 0.95 

𝑋𝑑𝑒𝑐 = 23.46 + 0.72(𝑋𝑛𝑜𝑣 − 23.57) + 0.3𝑍12 

 

Table D7:BH4886 

Month S Mean Z Correlation Thomas-Fiering Model 

January 

2.09 5.08 0.904 -0.62 𝑋𝑗𝑎𝑛 = 5.08 − 2.95(𝑋𝑑𝑒𝑐 − 6.4) + 1.64𝑍1 

February 

1.86 5.54 0.437 -0.34 𝑋𝐹𝑒𝑏 = 5.54 − 0.3(𝑋𝑗𝑎𝑛 − 5.08) + 1.75𝑍2 

March  

1.28 5.88 -2.12 0.994 𝑋𝑚𝑎𝑟 = 5.88 + 0.68(𝑋𝑓𝑒𝑏 − 5.54) + 0.18𝑍3 

April 

1.11 5.91 1.085 0.985 𝑋𝐴𝑝𝑟 = 5.91 + 0.85(𝑋𝑚𝑎𝑟 − 5.88) + 0.19𝑍4 

May 

0.92 5.84 -0.277 0.95 𝑋𝑚𝑎𝑦 = 5.84 + 0.79(𝑋𝐴𝑝𝑟 − 5.91) + 0.29𝑍5 

June 

0.73 5.85 -2.17 0.99 𝑋𝑗𝑢𝑛 = 5.85 + 0.79(𝑋𝑚𝑎𝑦 − 5.84) + 0.1𝑍6 

July 

0.74 5.90 0.018 0.99 𝑋𝑗𝑢𝑙 = 5.90 + 1.0(𝑋𝑗𝑢𝑛 − 5.85) + 0.1𝑍7 

August 

0.66 5.84 -0.722 0.99 𝑋𝐴𝑢𝑔 = 5.84 + 0.88(𝑋𝑗𝑢𝑙 − 5.90) + 0.09𝑍8 

September 

1.08 6.26 0.21 0.993 𝑋𝑠𝑒𝑝𝑡 = 6.26 + 1.62(𝑋𝐴𝑢𝑔 − 5.84) + 0.13𝑍9 

October 

0.55 6.18 -0.556 0.997 𝑋𝑜𝑐𝑡 =  6.18 + 0.5(𝑋𝑠𝑒𝑝𝑡 − 6.26) + 0.04𝑍10 

November 

0.47 6.39 0.465 0.996 𝑋𝑛𝑜𝑣 = 6.39 + 0.85(𝑋𝑜𝑐𝑡 − 6.18) + 0.04𝑍11 

December 

0.44 6.40 -1.812 0.779 𝑋𝑑𝑒𝑐 = 6.40 + 0.73(𝑋𝑛𝑜𝑣 − 6.39) + 0.28𝑍12 
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Table D8:Z4401 

Month S Mean Z Correlation 
Thomas-Fiering Model 

January 
0.82 5.34 -0.179 0.14 𝑋𝑗𝑎𝑛 = 5.34 + 0.09(𝑋𝑑𝑒𝑐 − 6.36) + 0.81𝑍1 

February 
0.65 4.83 -0.399 -0.02 𝑋𝐹𝑒𝑏 = 4.83 − 0.02(𝑋𝑗𝑎𝑛 − 5.34) + 0.65𝑍2 

March  
0.43 5.13 -0.235 0.4 𝑋𝑚𝑎𝑟 = 5.13 + 0.26(𝑋𝑓𝑒𝑏 − 4.83) + 0.39𝑍3 

April 
0.56 4.79 -0.098 0.41 𝑋𝐴𝑝𝑟 = 4.79 + 0.53(𝑋𝑚𝑎𝑟 − 5.13) + 0.53𝑍4 

May 
0.33 4.79 -0.465 0.99 𝑋𝑚𝑎𝑦 = 4.79 + 0.58(𝑋𝐴𝑝𝑟 − 4.49) + 0.05𝑍5 

June 
0.29 4.95 1.563 0.97 𝑋𝑗𝑢𝑛 = 4.95 + 0.85(𝑋𝑚𝑎𝑦 − 4.79) + 0.07𝑍6 

July 
0.35 5.08 -1.085 0.95 𝑋𝑗𝑢𝑙 = 5.08 + 1.15(𝑋𝑗𝑢𝑛 − 4.95) + 0.11𝑍7 

August 
0.28 5.15 0.86 0.97 𝑋𝐴𝑢𝑔 = 5.15 + 0.78(𝑋𝑗𝑢𝑙 − 5.08) + 0.07𝑍8 

September 
0.80 5.66 0.388 0.83 𝑋𝑠𝑒𝑝𝑡 = 5.66 + 2.37(𝑋𝐴𝑢𝑔 − 5.15) + 0.45𝑍9 

October 
1.40 6.16 0.71 0.99 𝑋𝑜𝑐𝑡 =  6.16 + 1.73(𝑋𝑠𝑒𝑝𝑡 − 5.66) + 0.2𝑍10 

November 
0.49 5.79 0.421 0.89 

𝑋𝑛𝑜𝑣 = 5.79 + 0.311(𝑋𝑜𝑐𝑡 − 6.16)

+ 0.22𝑍11 

December 
1.22 6.36 1.454 0.52 𝑋𝑑𝑒𝑐 = 6.36 + 1.29(𝑋𝑛𝑜𝑣 − 5.79) + 1.04𝑍12 
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Table D9:BH4371 

Month S Mean Z Correlation 

 

Thomas-Fiering Model 

January 
1.06 4.21 -0.179 0.497 𝑋𝑗𝑎𝑛 = 4.21 + 1.35(𝑋𝑑𝑒𝑐 − 4.22) + 0.92𝑍1 

February 
0.70 3.55 -0.399 0.64 𝑋𝐹𝑒𝑏 = 3.55 + 0.42(𝑋𝑗𝑎𝑛 − 4.21) + 0.54𝑍2 

March  
0.65 3.59 -0.235 0.97 𝑋𝑚𝑎𝑟 = 3.59 + 0.9(𝑋𝑓𝑒𝑏 − 3.55) + 0.16𝑍3 

April 
0.53 3.52 -0.098 0.92 𝑋𝐴𝑝𝑟 = 3.52 + 0.75(𝑋𝑚𝑎𝑟 − 3.59) + 0.2𝑍4 

May 
0.38 3.53 -0.465 0.97 𝑋𝑚𝑎𝑦 = 3.53 + 0.70(𝑋𝐴𝑝𝑟 − 3.52) + 0.09𝑍5 

June 
0.37 3.60 1.563 0.99 𝑋𝑗𝑢𝑛 = 3.60 + 0.96(𝑋𝑚𝑎𝑦 − 3.53) + 0.05𝑍6 

July 
0.37 3.67 -1.085 0.99 𝑋𝑗𝑢𝑙 = 3.67 + 0.99(𝑋𝑗𝑢𝑛 − 3.60) + 0.05𝑍7 

August 
0.39 3.68 0.86 0.99 𝑋𝐴𝑢𝑔 = 3.68 + 1.04(𝑋𝑗𝑢𝑙 − 3.67) + 0.06𝑍8 

September 
0.39 3.79 0.388 0.99 𝑋𝑗𝑎𝑛 = 4.21 + 1.35(𝑋𝑑𝑒𝑐 − 4.22) + 0.92𝑍9 

October 
0.29 4.26 0.71 -0.39 𝑋𝐹𝑒𝑏 = 3.55 + 0.42(𝑋𝑗𝑎𝑛 − 4.21) + 0.54𝑍10 

November 
0.36 4.15 0.421 -0.31 𝑋𝑚𝑎𝑟 = 3.59 + 0.9(𝑋𝑓𝑒𝑏 − 3.55) + 0.16𝑍11 

December 
0.39 4.22 1.454 0.98 𝑋𝐴𝑝𝑟 = 3.52 + 0.75(𝑋𝑚𝑎𝑟 − 3.59) + 0.2𝑍12 

 

 

 

 

 

 

 

 

 

 



111 
 

Table D10:BH4348 

Month S Mean Z Correlation 

 

 

Thomas-Fiering Model 

January 
0.45 5.81 -0.179 -0.34 𝑋𝑗𝑎𝑛 = 5.81 − 0.33(𝑋𝑑𝑒𝑐 − 5.46) + 0.06𝑍1 

February 
0.76 4.72 -0.399 -0.48 𝑋𝐹𝑒𝑏 = 4.72 − 0.81(𝑋𝑗𝑎𝑛 − 5.81) + 0.67𝑍2 

March 
1.46 4.36 -0.235 0.82 𝑋𝑚𝑎𝑟 = 4.36 + 0.58(𝑋𝑓𝑒𝑏 − 4.72) + 0.84𝑍3 

April 
0.88 4.56 -0.098 0.96 𝑋𝐴𝑝𝑟 = 4.56 + 0.75(𝑋𝑚𝑎𝑟 − 4.36) + 0.25𝑍4 

May 
0.78 4.70 -0.465 0.998 𝑋𝑚𝑎𝑦 = 4.70 + 0.88(𝑋𝐴𝑝𝑟 − 4.56) + 0.05𝑍5 

June 
0.59 4.76 1.563 0.98 𝑋𝑗𝑢𝑛 = 4.76 + 0.74(𝑋𝑚𝑎𝑦 − 4.70) + 0.11𝑍6 

July 
0.49 4.88 -1.085 0.99 𝑋𝑗𝑢𝑙 = 4.88 + 0.82(𝑋𝑗𝑢𝑛 − 4.76) + 0.07𝑍7 

August 
0.56 4.94 0.86 0.99 𝑋𝐴𝑢𝑔 = 4.94 + 1.13(𝑋𝑗𝑢𝑙 − 4.88) + 0.08𝑍8 

September 
0.48 5.00 0.388 0.98 𝑋𝑠𝑒𝑝𝑡 = 5 + 0.84(𝑋𝐴𝑢𝑔 − 4.94) + 0.10𝑍9 

October 
0.49 5.16 0.71 0.99 𝑋𝑜𝑐𝑡 =  5.16 + 1.01(𝑋𝑠𝑒𝑝𝑡 − 5) + 0.07𝑍10 

November 
0.47 5.34 0.421 0.97 𝑋𝑛𝑜𝑣 = 5.34 + 0.93(𝑋𝑜𝑐𝑡 − 5.16) + 0.11𝑍11 

December 
0.46 5.46 1.454 0.98 𝑋𝑑𝑒𝑐 = 5.46 + 0.96(𝑋𝑛𝑜𝑣 − 5.34) + 0.09𝑍12 
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Table D11:BH4995 

Month S Mean Z Correlation 

 

Thomas-Fiering Model 

January 
2.42 9.95 0.904 -0.35 𝑋𝑗𝑎𝑛 = 9.95 − 0.98(𝑋𝑑𝑒𝑐 − 11.24) + 2.27𝑍1 

February 
1.93 8.28 0.437 -0.96 𝑋𝐹𝑒𝑏 = 8.28 − 0.77(𝑋𝑗𝑎𝑛 − 9.95) + 0.54𝑍2 

March 
1.75 8.67 -2.12 0.99 𝑋𝑚𝑎𝑟 = 8.67 + 0.90(𝑋𝑓𝑒𝑏 − 8.28) + 0.25𝑍3 

April 
0.40 8.63 1.085 -0.11 𝑋𝐴𝑝𝑟 = 8.63 − 0.03(𝑋𝑚𝑎𝑟 − 8.67) + 0.4𝑍4 

May 
1.39 8.82 -0.27 0.58 𝑋𝑚𝑎𝑦 = 8.82 + 2(𝑋𝐴𝑝𝑟 − 8.63) + 1.13𝑍5 

June 
1.31 9.42 -2.17 0.99 𝑋𝑗𝑢𝑛 = 9.42 + 0.93(𝑋𝑚𝑎𝑦 − 8.82) + 0.18𝑍6 

July 
1.31 10.12 0.018 0.99 𝑋𝑗𝑢𝑙 = 10.12 + 0.99(𝑋𝑗𝑢𝑛 − 9.42) + 0.18𝑍7 

August 
1.10 10.65 -0.72 0.94 𝑋𝐴𝑢𝑔 = 10.65 + 0.79(𝑋𝑗𝑢𝑙 − 10.12) + 0.38𝑍8 

September 
2.15 12.67 0.21 0.15 𝑋𝑠𝑒𝑝𝑡 = 12.67 + 0.29(𝑋𝐴𝑢𝑔 − 10.65) + 2.13𝑍9 

October 
1.16 12.07 -0.55 -0.37 𝑋𝑜𝑐𝑡 =  12.07 − 0.2(𝑋𝑠𝑒𝑝𝑡 − 12.67) + 1.08𝑍10 

November 
1.14 12.08 0.465 0.86 𝑋𝑛𝑜𝑣 = 12.08 + 0.85(𝑋𝑜𝑐𝑡 − 12.07) + 0.58𝑍11 

December 
0.86 11.24 -1.81 -0.99 𝑋𝑑𝑒𝑐 = 11.24 − 0.75(𝑋𝑛𝑜𝑣 − 12.08) + 0.12𝑍12 
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Table D12:BH4887 

Month S Mean Z Correlation 

 

Thomas-Fiering Model 

January 
0.43 2.55 1.563 0.69 𝑋𝑗𝑎𝑛 = 2.55 + 0.8(𝑋𝑑𝑒𝑐 − 2.77) + 0.31𝑍1 

February 
0.27 2.25 -1.08 -0.91 𝑋𝐹𝑒𝑏 = 2.25 − 0.57(𝑋𝑗𝑎𝑛 − 2.55) + 0.11𝑍2 

March 
0.21 2.25 0.86 0.84 𝑋𝑚𝑎𝑟 = 2.25 + 0.65(𝑋𝑓𝑒𝑏 − 2.25) + 0.11𝑍3 

April 
0.14 2.28 0.388 0.37 𝑋𝐴𝑝𝑟 = 2.28 + 0.25(𝑋𝑚𝑎𝑟 − 2.25) + 0.13𝑍4 

May 
0.07 2.30 0.71 0.81 𝑋𝑚𝑎𝑦 = 2.30 − 0.41(𝑋𝐴𝑝𝑟 − 2.28) + 0.04𝑍5 

June 
0.13 2.42 0.421 0.37 𝑋𝑗𝑢𝑛 = 2.42 + 0.69(𝑋𝑚𝑎𝑦 − 2.30) + 0.12𝑍6 

July 
0.12 2.40 1.454 -0.44 𝑋𝑗𝑢𝑙 = 2.40 − 0.41(𝑋𝑗𝑢𝑛 − 2.42) + 0.11𝑍7 

August 
0.14 2.43 0.904 0.99 𝑋𝐴𝑢𝑔 = 2.43 + 1.16(𝑋𝑗𝑢𝑙 − 2.40) + 0.02𝑍8 

September 
1.29 3.23 0.437 0.14 𝑋𝑠𝑒𝑝𝑡 = 3.23 + 1.29(𝑋𝐴𝑢𝑔 − 2.43) + 1.28𝑍9 

October 
0.37 2.75 -2.12 0.94 𝑋𝑜𝑐𝑡 =   2.75 + 0.27(𝑋𝑠𝑒𝑝𝑡 − 3.23) + 0.13𝑍10 

November 
0.60 2.97 1.085 0.99 𝑋𝑛𝑜𝑣 = 2.97 + 1.61(𝑋𝑜𝑐𝑡 − 2.75) + 0.08𝑍11 

December 
0.37 2.77 -0.27 0.56 𝑋𝑑𝑒𝑐 = 2.77 + 0.35(𝑋𝑛𝑜𝑣 − 2.97) + 0.31𝑍12 
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Table D13:BH4973 

Month S Mean Z Correlation 
Thomas-Fiering Model 

January 
1.36 7.72 -0.098 0.7 𝑋𝑗𝑎𝑛 = 7.72 + 0.63(𝑋𝑑𝑒𝑐 − 8.41) + 0.97𝑍1 

February 
1.34 6.06 -0.465 -0.1 𝑋𝐹𝑒𝑏 = 6.06 − 0.1(𝑋𝑗𝑎𝑛 − 7.72) + 1.34𝑍2 

March 
1.47 6.19 1.563 0.94 𝑋𝑚𝑎𝑟 = 6.19 + 1.03(𝑋𝑓𝑒𝑏 − 6.06) + 0.5𝑍3 

April 
1.37 5.89 -1.085 0.97 𝑋𝐴𝑝𝑟 = 5.89 + 0.9(𝑋𝑚𝑎𝑟 − 6.19) + 0.33𝑍4 

May 
0.68 6.26 0.86 0.67 𝑋𝑚𝑎𝑦 = 6.26 + 0.33(𝑋𝐴𝑝𝑟 − 5.89) + 0.5𝑍5 

June 
1.03 6.37 0.388 0.9 𝑋𝑗𝑢𝑛 = 6.37 + 0.36(𝑋𝑚𝑎𝑦 − 6.26) + 0.45𝑍6 

July 
1.02 7.09 0.71 0.99 𝑋𝑗𝑢𝑙 = 7.09 + 0.98(𝑋𝑗𝑢𝑛 − 6.37) + 0.14𝑍7 

August 
1.42 7.35 0.421 0.99 𝑋𝐴𝑢𝑔 = 7.35 + 1.38(𝑋𝑗𝑢𝑙 − 7.09) + 0.2𝑍8 

September 
0.93 7.87 1.454 0.89 𝑋𝑠𝑒𝑝𝑡 = 7.87 + 0.58(𝑋𝐴𝑢𝑔 − 7.35) + 0.42𝑍9 

October 
0.97 8.42 0.904 0.99 𝑋𝑜𝑐𝑡 =   8.42 + 1.03(𝑋𝑠𝑒𝑝𝑡 − 7.87)

+ 0.14𝑍10 

November 
1.04 8.65 0.437 0.02 𝑋𝑛𝑜𝑣 = 8.65 + 0.02(𝑋𝑜𝑐𝑡 − 8.42) + 1.04𝑍11 

December 
1.52 8.41 -2.12 0.72 𝑋𝑑𝑒𝑐 = 8.41 + 1.05(𝑋𝑛𝑜𝑣 − 8.65) + 1.05𝑍12 
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APPENDIX E –Comparison between forecasting results for ARIMA and T-F models  

Borehole Months of  Forecasts (m) Observed (m)       % Error 

  Forecasting ARIMA T-F  GWL ARIMA T-F 

BH4341 Sep-12 2.13 1.98 2.21 3.6 10.4 

 Oct-12 2.09 1.96 2.4 12.9 18.3 

  Nov-12 2.07 1.9 1.99 4.02 4.52 

BH6423 Sep-12 8.25 3.91 8.39 1.7 53.4 

 Oct-12 8.22 4.37 8.36 1.7 47.8 

  Nov-12 8.2 5.55 8.42 2.6 34.1 

BH4887 Sep-12 2.82 2.47 2.84 0.7 13 

 12-Oct 2.82 2.29 2.86 1.4 20 

  Nov-12 2.82 2.3 3.03 6.9 24 

BH4973 Aug-12 10.07 8.36 9.64 4.5 13.3 

 Sep-12 10.18 8.63 10 1.8 13.7 

  Oct-12 10.35 9.15 10.01 3.4 8.6 

BH4165 Dec-11 3.2 4.14 3.29 3 25.9 

 Jan-12 3.13 4.14 3.45 9.3 19.9 

  Feb-12 3.09 4.2 3.25 4.6 29.2 

BH4164 Oct-12 4.77 5.04 5.46 12.6 7.8 

 Nov-12 4.75 5.08 5.63 15.6 9.8 

  Dec-12 4.72 4.58 5.54 14.8 17.3 

BH4163 Oct-12 3.33 1.9 3.38 1.5 43.7 

 Nov-12 3.18 2.39 3.49 8.9 31.7 

  Dec-12 3.04 2.42 2.96 2.7 18.3 

BHZ6424 Sep-12 24.26 23.45 24.29 0.1 3.5 

 Oct-12 24.2 23.67 24.24 0.2 2.4 

  Nov-12 24.22 23.7 24.62 1.6 3.7 

BH4886 Aug-12 6.3 5.82 6.4 1.6 9 

 Sep-12 6.23 6.24 6.45 3.4 3.2 

  Oct-12 6.17 96.19 6.7 7.9 7.6 

Z4401 Sep-12 6.74 5.12 6.65 1.4 23.1 

 Oct-12 6.72 5.17 6.8 1.2 23.9 

  Nov-12 6.73 5.55 6.92 2.7 19.7 

BH4371 Oct-12 4.62 4.23 4.72 2.1 10.4 

 Nov-12 4.58 4.15 4.87 6 14.9 

  Dec-12 4.54 3.9 4.81 5.6 19 

BH4348 Sep-12 6.02 5.36 6.05 0.5 11.4 

 Oct-12 5.99 5.52 6.17 2.9 10.6 

  Nov-12 5.95 5.74 6.33 6 9.4 

BH4995 Oct -12 15.06 12.37 14.68 2.6 15.8 

 Nov-12 15.17 12.26 15.06 0.7 18.6 

  Dec-12 15.28 11.16 15.22 0.4 26.7 
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APPENDIX F 

Table F1: Computation of R2 for fitting Gaussian model (July 2005) 

Distance I C SemiVar SemiCol_Dist SemiCol_Avg G_Gam_Sqr G_Av_Sqr R2 

0 0.08 0.1 0.01 0 0.006 7.97E-07 0.002 0.6 

800 0.125 0.43 0.02 0.009 0.01 0 0.001 0.6 

1600 -0.091 0.68 0.04 0.019 0.019 0 0 0.6 

2400 0.16 0.92 0.05 0.032 0.031 0 8.44E-07 0.6 

3200 -0.054 0.88 0.05 0.047 0.047 1.57E-05 1.59E-06 0.6 

4000 0.034 1.61 0.09 0.06 0.061 0.001 0.002 0.6 

4800 -0.393 1.73 0.1 0.072 0.071 0.001 0.002 0.6 

 

Table F2: Computation of R2 for fitting exponential model (July 2005) 

Distance I C SemiVar SemiCol_Dist SemiCol_Avg G_Gam_Sqr G_Av_Sqr R2 

0 0.08 0.1 0.01 0 0.011 3.47E-05 0.003 0.7 

800 0.125 0.43 0.02 0.022 0.023 1.73E-06 0.001 0.7 

1600 -0.091 0.68 0.04 0.034 0.034 1.88E-05 0 0.7 

2400 0.16 0.92 0.05 0.045 0.044 7.28E-05 1.54E-05 0.7 

3200 -0.054 0.88 0.05 0.053 0.053 7.25E-06 3.73E-05 0.7 

4000 0.034 1.61 0.09 0.06 0.06 0.001 0.001 0.7 

4800 -0.393 1.73 0.1 0.066 0.066 0.001 0.002 0.7 

5600 -0.497 1.58 0.09 0.071 0.07 0 0.001 0.7 

 

Table F3: Computation of R2 for fitting Exponential model (February 2006) 

Distance I C SemiVar SemiCol_Dist SemiCol_Avg G_Gam_Sqr G_Av_Sqr R2 

0 -0.09 0.26 0.16 0 0.205 0.002 0.05 0.7 

800 0.2 0.41 0.26 0.268 0.278 0 0.016 0.7 

1600 -0.108 0.7 0.46 0.344 0.343 0.013 0.005 0.7 

2400 0.243 0.87 0.49 0.401 0.399 0.009 0.011 0.7 

3200 -0.121 0.93 0.56 0.445 0.446 0.014 0.031 0.7 
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Table F4: Computation of R2 for fitting Gaussian model (February 2006) 

Distance I C SemiVar SemiCol_Dist SemiCol_Avg G_Gam_Sqr G_Av_Sqr R2 

0 -0.09 0.26 0.16 0 0.173 0 0.05 0.4 

800 0.2 0.41 0.26 0.199 0.205 0.003 0.016 0.4 

1600 -0.108 0.7 0.46 0.274 0.273 0.034 0.005 0.4 

2400 0.243 0.87 0.49 0.369 0.365 0.016 0.011 0.4 

3200 -0.121 0.93 0.56 0.455 0.456 0.011 0.031 0.4 

 

Table F5: Computation of R2 for fitting Spherical model (July 2005) 

Distance I C SemiVar SemiCol_Dist SemiCol_Avg G_Gam_Sqr G_Av_Sqr R2 

0 0.08 0.1 0.01 0 0.014 7.78E-05 0.002 0.7 

800 0.125 0.43 0.02 0.031 0.034 9.48E-05 0.001 0.7 

1600 -0.091 0.68 0.04 0.055 0.055 0 0 0.7 

2400 0.16 0.92 0.05 0.074 0.073 0 8.44E-07 0.7 

3200 -0.054 0.88 0.05 0.087 0.087 0.001 1.59E-06 0.7 

4000 0.034 1.61 0.09 0.092 0.092 2.29E-07 0.002 0.7 

4800 -0.393 1.73 0.1 0.092 0.092 4.97E-05 0.002 0.7 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 


