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Abstract

Background: Gut microbiota from individuals in rural, non-industrialized societies differ from those in individuals
from industrialized societies. Here, we use 16S rRNA sequencing to survey the gut bacteria of seven non-industrialized
populations from Tanzania and Botswana. These include populations practicing traditional hunter-gatherer,
pastoralist, and agropastoralist subsistence lifestyles and a comparative urban cohort from the greater
Philadelphia region.

Results: We find that bacterial diversity per individual and within-population phylogenetic dissimilarity differs
between Botswanan and Tanzanian populations, with Tanzania generally having higher diversity per individual
and lower dissimilarity between individuals. Among subsistence groups, the gut bacteria of hunter-gatherers
are phylogenetically distinct from both agropastoralists and pastoralists, but that of agropastoralists and
pastoralists were not significantly different from each other. Nearly half of the Bantu-speaking agropastoralists
from Botswana have gut bacteria that are very similar to the Philadelphian cohort. Based on imputed
metagenomic content, US samples have a relative enrichment of genes found in pathways for degradation of
several common industrial pollutants. Within two African populations, we find evidence that bacterial
composition correlates with the genetic relatedness between individuals.

Conclusions: Across the cohort, similarity in bacterial presence/absence compositions between people
increases with both geographic proximity and genetic relatedness, while abundance weighted bacterial
composition varies more significantly with geographic proximity than with genetic relatedness.

Keywords: Gut microbiome, Genetics, Diet, Adaptation, Sub-Saharan Africa, Hunter-gatherers, Pastoralists,
Agropastoralists, Rural populations, Industrialization

Background
Gut microbiota have been shown to be affected by numer-
ous factors, including host diet, medications, pets, socioeco-
nomic status, environment of residence, and chance
acquisition of lineages [1–15]. While temporary changes in

diet have been shown to cause circumscribed shifts in gut
bacterial composition, the dominant bacterial composition
in healthy adults remains relatively stable and is influenced
by long-term diet [12, 16–18]. Plant and animal domestica-
tion during the Neolithic period (~ 10 thousand years ago
(kya)), and the shift from hunter-gatherer subsistence pat-
terns to pastoralist and agriculturalist practices, constituted
a major change in diet [19]. Numerous contemporary, rural
African populations continue to practice traditional subsist-
ence lifestyles, including pastoralism, hunting and
gathering, and small-scale agropastoralism. Examining their
microbiome composition and function can inform
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host-microbiota dynamics in the absence of the impact of
industrialization and widespread antibiotic use.
Several cross-population studies have compared the

gut microbiome of urban-industrial societies with
traditional hunter-gatherer or agricultural societies.
The latter two populations consume foods that are
relatively lower in sugars, fats, and animal protein
and are relatively higher in fiber [12, 20, 21]. The
gut bacteria of urban-industrialized populations often
have high abundances of Bacteroides, while the gut bac-
teria from traditional hunter-gatherer or agropastoral soci-
eties have higher abundances of Prevotella [22–28].
Whether these trends are due to the types or quantities of
foods consumed, cultural or social practices, geographic,
genetic, or other factors is unclear. Although there have
been several studies of microbiome diversity within
African populations [22–24, 27, 29–31], the range of gut
microbiome compositions among African populations
with diverse subsistence practices remains largely
unknown.

Here, we present a comparison of gut microbiota
from rural populations in Tanzania (N = 60), Botswana
(N = 54), and individuals living in an urban US city
(Philadelphia, PA) (N = 12) (Fig. 1, Table 1) [12, 32, 33].
The African populations are composed of multiple eth-
nic groups practicing varying degrees of hunting and
gathering, agropastoralism, and pastoralism. “Pastoral-
ists” are defined here as any population whose diet and
economy are centered on cattle herding. We term pop-
ulations whose diet and economy are centered around
small-scale subsistence farming as “agropastoralists,”
as every farming village we sampled also raised cattle
or small livestock. Any population that derives most of
its food from foraged plants and/or hunted game ani-
mals are termed “hunter-gatherers.”
The four Tanzanian populations sampled are (1) the

Khoesan click-speaking Hadza, who are savannah
hunter-gatherers; (2) the Khoesan click-speaking San-
dawe, who are former savannah hunter-gatherers that
adopted agropastoral practices over a hundred years

Fig. 1 Map of the sampled population groups
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ago; (3) the Nilo-Saharan-speaking Maasai, who are
semi-nomadic cattle herders; and (4) the Afroasiatic-
speaking Burunge, who are agropastoralists. The three
Botswanan groups sampled are (1) the Khoesan
click-speaking San, who are hunter-gatherers of the
Kalahari desert that have recently adopted some agropas-
toralist practices [34, 35]; (2) the Niger-Kordofanian Ban-
tu-speaking Herero, who are Kalahari pastoralists; and
(3) several groups of Niger-Kordofanian Bantu-speak-
ing agropastoralists, hereafter referred to as “Bantu
agropastoralists.” The US cohort is mainly composed
of individuals who self-identified as “White,” with one
self-identified “African American.”

Results
Data overview
DNA was extracted from stool samples, and the 16S
rRNA gene V1-V2 segments were amplified and
sequenced in all 126 participants. Sequences were ag-
gregated at 97% identity, yielding 18,915 operational
taxonomic units (OTUs). Seventeen thousand eight
hundred seventy OTUs mapped to one of 191 bacterial
taxa in the Greengenes classification database [36],
1044 OTUs were unassigned, and one OTU could only
be mapped at the taxonomic resolution of Kingdom
(Bacteria). The mean population abundance of un-
assigned reads was less than 0.15%, and we removed the
1044 unassigned OTUs and single Kingdom (Bacteria)
OTU from further analysis (Additional file 1: Figure S1).
Compared to the US samples, the African samples have
a larger relative abundance of OTUs that were not con-
fidently assigned to a known taxa (Additional file 1:
Figure S1A). The four Tanzanian populations have the
largest number of unassigned OTUs per individual
(Additional file 1: Figure S1B), while the Sandawe have

a larger number of total unassigned reads per individual
compared to any other population (Additional file 1:
Figure S1B). Collector’s curves showing the rate that
new OTUs are detected as sample size is increased
were calculated for OTUs with abundance > 0.01%
and averaged per population (Additional file 1: Figure
S2). These curves show that increasing our sample
size would only marginally increase OTU counts. On
average, the Sandawe have the highest number of
OTUs, while the US have the lowest (Additional file 1:
Figure S2).

Abundance of Prevotellaceae varies within and between
African populations
Bacteroidales (phylum Bacteroidetes) and Clostridiales
(phylum Firmicutes) are the two most common orders
of bacteria in nearly every individual (Fig. 2a), as ex-
pected for the human gut microbiome [37]. The rela-
tive proportions of Bacteroidales and Clostridiales
varies by individual and by population (Fig. 2c). Com-
paring each population against the rest of the cohort
and considering just the two taxa Bacteroidales and
Clostridiales, we find that the Hadza have a signifi-
cantly higher proportion of Bacteroidales (Mann-
Whitney-Wilcoxon (MWW) test, p value 6.3 × 10−4),
the US have a significantly lower proportion of Bacter-
oidales (MWW test, p value 0.020), whereas no other
population had a significantly different proportion of
Bacteroidales (smallest MWW test p value is 0.27).
Prevotellaceae is the most common bacterial family

among the Africans in this cohort, being the most
abundant family in 70.2% of Africans as well as having
the largest mean abundance per population in every
African population (Fig. 2b). Higher Prevotellaceae
abundance has been previously associated with infection

Table 1 Cohort metadata per population group, listing country, population name, subsistence practice, number of individuals, and
age range

Country Population Subsistence Number
(Total)

Number
(Female)

Number
(Male)

Age
(Ave)

Age
(Min)

Age
(Max)

Tanzania Burunge Agropastoralist 11 10 1 48 22 70

Sandawe Agropastoralist 12 10 2 47.2 33 61

Maasai Pastoralist 12 6 6 39.5 24 68

Hadza Hunting and gathering 25 10 15 44.2 19 90

Subtotals 60 36 24 44.5 19 90

Botswana Bantu Agropastoralist 26 19 7 49.8 24 92

Herero Pastoralist 8 7 1 44.5 19 77

San Hunting and gathering 20 15 5 28.0 18 42

Subtotals 54 41 13 40.9 18 92

USA Philadelphia Industrial agropastoralist 12 4 8 26.2 22 33

Totals 126 81 45 41.2 18 90

Hansen et al. Genome Biology           (2019) 20:16 Page 3 of 21



A B

C

Fig. 2 The relative abundance per individual for the ten most common taxa, shown for the bacterial taxonomic rank of a Order and b Family. c
The population distribution of the relative proportion of Bacteroidales per total of Bacteroidales and Clostridiales
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by the globally endemic gastrointestinal parasite
Entamoeba in central African rainforest hunter-gatherers
[30, 38]. Fecal DNA was screened for E. histolytica but
this parasite was not detected in our samples, demon-
strating that the high Prevotellaceae abundances are not
due to E. histolytica infection in our samples. Ruminococ-
caceae is the second most common bacterial family in the
African cohort, being the most abundant bacteria in 14%
of Africans.
Bacteroidaceae is the most common bacterial family

among the US cohort, being the most abundant family
in 50% of US samples and having the largest population
mean abundance. Ruminococcaceae is the second most
common bacteria in the US cohort, being the most
abundant bacteria in 25% of the US samples and having
the second largest mean abundance.
Considerable variation in taxa abundances exists

within African samples. In particular, 23 Africans have
abundances of Prevotellaceae as low as what we find in
the US samples (within one standard deviation of the
mean US, an abundance of 12.4%). Among the African
samples with such low Prevotellaceae abundance, 19
are from Botswana and of those, 12 are from the Bantu
population. Fifty-two Africans were tested by quantita-
tive PCR for absolute 16S rRNA copy numbers per
gram of stool, including eight Bantu from Botswana. Of
these eight Bantu, six individuals were in the low Prevo-
tellaceae Bantu subset, and this group had the lowest

average 16S rRNA copy number per gram of stool
among any of the African groups (Additional file 1:
Figure S3, Additional file 2: Table S1A, “Bantu_2”). We
tested whether age, sex, host BMI, sampling latitude, or
sampling longitude distinguished these 12 individuals
from the other Bantu, but none were statistically signifi-
cant (Wilcoxon rank sum tests, smallest p value is 0.41).
Finally, we note that for 12 African individuals their most
abundant bacterial family is not Prevotellaceae, Rumino-
coccaceae, or Bacteroidaceae, and in ten of these samples
the taxa is unresolved at the level of family.

Bacterial diversity per individual is higher in Tanzania
than in Botswana
The African populations varied in gut microbial α-diver-
sity (bacterial diversity, or bacterial richness and even-
ness, within each individual), as quantified with the
Shannon diversity index (Fig. 3a). The US cohort had
the least bacterial diversity, while the Sandawe had the
highest, similar to previous comparisons of industrial-
ized populations versus hunter-gatherers [24–27, 30]
and small-scale agropastoralists [22, 23]. These trends
are not impacted by rarefaction of OTU counts to 5000
per individual, as evidenced by the high correlation in
Shannon diversity index with and without rarefaction
(Spearman’s rho correlation 0.998, Additional file 1:
Figure S4). α-diversity was not significantly correlated
with the absolute 16S rRNA gene copy number (R2 =− 0.011,

A

B

C

D

E

Fig. 3 Within group mean α and β diversity. a Shannon index. b Unweighted UniFrac distance distribution within group. c Weighted
UniFrac distance distribution within group. The within-population mean Shannon diversity versus unweighted and weighted UniFrac
distances are shown in d and e, respectively
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p value = 0.51) (Additional file 1: Figure S3E). However,
we do find that the absolute 16S rRNA gene copy
number is significantly higher in the Tanzanians than
in the Botswanans (MWW test, FDR q value = 0.023)
(Additional file 1: Figure S3D).

Between host bacterial diversity is correlated with within-
host bacterial diversity
The populations also varied in the within-population β-di-
versity (microbiota compositional dissimilarity between
hosts), quantified by the UniFrac distance. The UniFrac
distance is the fraction of the phylogenetic tree not shared
between two samples, where the phylogeny of all taxa
found in a bacterial community is estimated based on
ribosomal RNA sequence similarity. Smaller values indi-
cate greater sharing of the microbial phylogenetic tree
among hosts within a population, which may reflect
greater homogeneity in environmental factors (e.g., diet,
cultural practices, shared geographic location). The Tanza-
nian Sandawe have the lowest within-population β-diver-
sity, while the Botswanan Bantu and US have the largest
within-population β-diversity (Fig. 3b, c).
We find a significant negative correlation between mean

population α- diversity and mean within-population β-di-
versity for unweighted UniFrac distances (Fig. 3d, e) (un-
weighted UniFrac β-diversity: linear regression R2 = 0.84,
p value = 1.47 × 10−3, and Kendall Tau correlation − 0.79,
p value = 6.5 × 10−3; weighted UniFrac β-diversity: linear re-
gression R2 = 0.49, p value = 0.052, and Kendall Tau correl-
ation − 0.43, p value = 0.14). When individual pairs are
restricted to the same sampling location for the
within-population UniFrac calculation, the trend across
Tanzanian populations is no longer evident, though the dif-
ferences between Tanzania and Botswana remain
(Additional file 1: Figure S5). The correlation between α-
diversity and β-diversity also holds when counts are rarefied
to 5000 reads per individual (Additional file 1: Figure S6),
which accords with the high degree of correlation in Uni-
Frac distances with and without rarefaction (Spearman’s
rho correlation of 0.965 and 0.999 for unweighted and
weighted UniFrac, respectively, Additional file 1:
Figures S7 and S8). Additionally, the Bray-Curtis dis-
similarity metric for beta-diversity yields similar results
as the weighted UniFrac distance (see Additional file 1:
Figure S9 and S10). Thus, the correlation between α-
and β-diversity does not appear to be an artifact of
choice of UniFrac as a β-diversity measure, uneven
sampling location diversity, or uneven sequencing
depth across individuals.

Gut bacteria composition is more distinct between
countries than between subsistence practices
The gut bacterial compositional differences between
populations were quantified by the mean UniFrac

distance between all pairs of individuals taken from
between-population pairs. The between-population bac-
terial phylogenetic distances were larger between the US
cohort and each African population than between any
two African populations (Additional file 1: Figure S11,
Additional file 2: Table S1B,C). The largest unweighted
UniFrac distance within Africa was between the Botswa-
nan Bantu and Tanzanian Hadza, which was nearly 92%
of the average distance between the US and African pop-
ulations. The largest weighted UniFrac distance within
Africa was between the Bantu and the Herero in
Botswana, which is nearly 84% of the mean distance
average between the US and African populations.
The degree of compositional difference between two

groups was assessed with PERMANOVA [39] tests of
UniFrac distances, which measures the significance of
the between-group variation to within-group variation
(pseudo F-statistic) by permutation of group assignment.
If two groups have identical distributions of bacterial
composition, then the pseudo F-statistic will be ~ 1, with
larger values corresponding to greater difference in com-
position between the two groups. As shown in Fig. 4,
among pairs of countries, the USA and Tanzania have
the largest pseudo F-statistic. The pseudo F-statistic for
Tanzania and Botswana is as large, or nearly as large, as
the pseudo F-statistic between the USA and Botswana
(Fig. 4a, d, Additional file 2: Table S1D-G), which
demonstrates that the bacterial compositional variation
between two regional, rural, African cohorts can be of
similar magnitude as the compositional variation
between an urban/industrialized cohort and a rural
African cohort.
Among the three pairs of African subsistence groups,

the hunter-gatherers have significantly different com-
positions from both the agropastoralists and the pasto-
ralists, while the agropastoralists and pastoralists are
not significantly different from each other (Fig. 4b, e,
Additional file 2: Table S1H,I). Comparing the magni-
tudes of difference between subsistence groups and
geographic groups, we therefore find that the bacterial
compositional difference between Tanzania and Botswana
(a geographic grouping) is larger than between any of the
African subsistence groups (both unweighted and
weighted UniFrac F-statistics). From this observation, we
infer that the gut bacteria are phylogenetically more dis-
tinct between groups defined by region (country) than by
subsistence practice.

Gut bacterial composition is significantly different
between males and females in the Maasai and Hadza
Four populations were tested for differences between
sex in bacterial α-diversity (Shannon diversity index,
minimum of five individuals per sex for MWW test),
Hadza, Maasai, San, and Bantu, and none showed a
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significant difference (all MWW test p values > 0.17). Five
populations were tested for a significant β-diversity
distance between sexes using PERMANOVA (UniFrac
distances, minimum of four individuals per sex):
Hadza, Maasai, San, Bantu, and US. The Hadza and
Maasai had significantly larger unweighted UniFrac dis-
tances between sexes than expected by chance (PERMA-
NOVA p value < 0.05) (Fig. 4c, Additional file 2: Table
S1J), while no population had a significantly elevated
weighted UniFrac distance between sexes (all PERMA-
NOVA p values > 0.2, Fig. 4f, Additional file 2: Table S1K).
Thus, there appears to be elevated phylogenetic differ-
ences between sexes in the Hadza and Maasai in terms of
presence or absence of bacterial OTUs but not in terms of
OTUs weighted by their abundance. Although we find a
significant difference between sexes for these two popula-
tions, larger sample sizes will be needed to identify the
factors causing these differences.

Gut bacteria compositions of individuals from the US are
more similar to Botswanans than to Tanzanians
Using principal coordinate analysis (PCoA), we find
that the similarities in overall bacterial OTU compos-
ition among individuals are strongly correlated with
the abundances of three common bacterial families,

Prevotellaceae, Bacteroidaceae, and Ruminococcaceae
(Spearman’s rho correlation with PCo1 p values are
1.0 × 10−40, 1.0 × 10−18, and 3.3 × 10−12, respectively,
and Spearman’s rho correlation with PCo2 p values are
5.0 × 10−7, 6.0 × 10−2, and 1.1 × 10−20, respectively) (Fig. 5,
Additional file 1: Figure S12). The first principal
coordinate (45% of variance) is most strongly associ-
ated with Prevotellaceae abundance while the second
principal coordinate (12% of variance) is most strongly
associated with Ruminococcaceae abundance.
The per population distribution of weighted UniFrac

distances between Africans and the US cohort shows
that the Botswanan gut bacteria are phylogenetically
more similar to the US gut bacteria than the Tanzanian
gut bacteria (Fig. 5d). This observation is consistent
with the PERMANOVA results and the observation
that there are more people with low Prevotellaceae
abundance and high Bacteroidaceae abundance in
Botswana than in Tanzania.
The 13 Bantu with high Prevotellaceae abundance

similar to other Africans were markedly more different
from the US cohort based on both weighted and
unweighted bacterial composition as well as within-indi-
vidual bacterial diversity (weighted UniFrac PERMA-
NOVA test p value = 2.0 × 10−5; unweighted UniFrac

A B C

D E F

Fig. 4 PERMANOVA tests of the phylogenetic difference between pairs of groups, based on unweighted UniFrac (panels a, b, c) and weighted
UniFrac (panels d, e, f). Shown are groups defined by country of origin (panels a, d), subsistence practice (panels b, e), and sex (panels c, f). The
subsistence practices are abbreviated as US =western (Philadelphian), HG = hunter-gatherers (Hadza, San), AP = agropastoralists (Bantu agropastoralists,
Burunge, Sandawe), and PA = pastoralists (Herero, Maasai). Bar in red denote pairs where the F-statistic p value is < 0.05
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PERMANOVA test p value = 2.0 × 10−5; MWW test on
Shannon diversity p value = 0.014). By contrast, the 12
Bantu with low Prevotellaceae abundance, similar to the
US cohort, were not statistically different from the US
samples based on bacterial abundance (weighted
UniFrac PERMANOVA test, p value = 0.12) but were
different based on unweighted bacterial composition and
within-individual bacterial diversity (unweighted UniFrac
PERMANOVA test, p value = 3.0 × 10−4 and MWW test
on Shannon diversities, p value = 0.028, respectively).
Thus, the similarities between these Bantu and US indi-
viduals are driven by common bacteria.

Observations of differentially abundant bacterial families
among populations, subsistence groups, age, and sex
The analysis of composition of microbiomes (ANCOM)
method [40] was used to test for significantly differen-
tially abundant bacteria among groups defined by coun-
try, population, subsistence lifestyle, and sex. We found
that two bacterial genera (out of Ngenus = 48) vary
significantly between Africa and the USA, Bacteroides
and Prevotella (Fig. 6a), both of which also varied sig-
nificantly between Tanzania and Botswana (Fig. 6b).
We also observed that Bacteroides is one of several bac-
teria that are differentially abundant among the seven

A C

B

D

Fig. 5 Principle coordinate analysis (PCoA) for weighted UniFrac distances. a The first two principle coordinates for all individuals in the study,
where marker shape and color denote the population of origin. Sidebar (panels b and c) show the abundances of Prevotellaceae (Prev.),
Bacteroidaceae (Bact.), and Ruminococcaceae (Rumi.) aligned to the first two principal coordinates. d Box-and-whisker distributions between each
African population and the US samples, over all pairs of individuals
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African populations (Fig. 6c). We note that 43.3% of all
Bacteroides reads, and 35.2% of African Bacteroides reads,
came from a single OTU (denovo36). Among the three
African subsistence categories three genera varied signifi-
cantly (Fig. 6d): p-75-a5, Ruminococcus, and Treponema.
p-75-a5 has previously been found in fecal samples from
healthy children from Bangladesh [41] as well as in
pre-weened calves [42]. Ruminococcus is also found in both
human and ruminant fecal samples [43]. The fact that both
p-75-a5 and Ruminococcus bacteria have the highest abun-
dance in pastoralists may be the result of close interaction
between humans and livestock. The third genera that var-
ies significantly among subsistence groups, Treponema, is

most abundant in hunter-gatherers and agropastoralists,
and has been previously associated with hunting and gath-
ering and small-scale agropastoral populations with diets
high in fiber [24, 25, 27]. Within the African cohort, no
taxa were found to vary significantly between sexes nor
among three age classes (18–39, 40–59, 60+).

Imputed metagenomes show functional differences
between populations and countries
The functional variation among populations was pre-
dicted using the metagenomic imputation method
Phylogenetic Investigation of the Communities by Re-
construction of Unobserved States (PICRUSt) [44].

A

B

D

C

Fig. 6 Box-and-whisker plots of relative abundances distributions per group for the taxa that varied significantly among groups by the ANCOM
tests, where individuals are grouped by a traditional or industrial lifestyle, b country of origin, c population, and d traditional subsistence strategy
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For every individual and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway, PICRUSt estimates
the total gene count within that pathway (normalized
to a relative abundance per pathway). Individuals
were then grouped by population, subsistence, coun-
try, and continent, and statistical tests were computed
on differences in the distribution of pathway abun-
dances. One hundred forty-six KEGG pathways were
significantly differentially enriched between the US
and African cohorts, and 148 KEGG pathways were
significantly differently enriched between Botswana
and Tanzania (White’s nonparametric t test, FDR <
0.1) (Additional file 2: Table S1L-P). The pathway
abundances of the Botswanan cohort are almost al-
ways intermediate between the Tanzanian and the US
cohorts. The pathway relative abundance difference
between Tanzania and Botswana is highly correlated
with the pathway relative abundance difference be-
tween Africa and the USA (Spearman’s rho correl-
ation 0.51, p value < 10−22; Additional file 1: Figure
S13A). We infer that the regional differences in bac-
terial abundances may lead to regional differences in
functional pathway abundances, depending upon the
accuracy of gene content imputation. For example, we
find that the degradation pathway of the pesticide di-
chlorodiphenyltrichloroethane, commonly known as
“DDT,” is enriched in Botswanan samples but not in
Tanzanian or US samples (Additional file 1: Figure
S13B). No KEGG pathways varied significantly among
African subsistence groups (ANOVA, FDR > 0.1).
Twenty-six KEGG pathways were significantly differen-

tially enriched both between Africa and the USA and be-
tween Tanzania and Botswana and also have absolute
relative differences > 15% between continent and between
country (Additional file 2: Table S1L and Additional file 1:
Figure S13A, shown in red). These are the pathways with
the most extreme regional differences in pathway en-
richment. Among these, five involve antibiotic biosyn-
thesis or resistance, six involve the degradation of
industrial xenobiotic compounds, nine involve diges-
tion, and three involve cell recognition or cell-cell
signaling. The frequencies for antibiotic resistance
pathways and the xenobiotic degradation are highest in
the USA and lowest in Tanzania, while the biosynthesis
of the antibiotic ubiquinone has highest pathway fre-
quency in Tanzania and lowest in the USA.

Gut bacterial alpha-diversity is higher in people with low
BMI
Previous research in humans and mice has observed
correlations between lower α-diversity and prevalence
of obesity [11, 45, 46]. Across all individuals (N = 126),
we find that the α-diversity was significantly negatively
correlated with the age- and sex-regressed BMI values

(Kendall tau (KT) correlation − 0.21, p value = 6.2 × 10−4)
(Additional file 2: Table S1Q), indicating lower bacterial
diversity in individuals with higher BMI. The correlation
remained significant among just the African individuals
(N = 114, KT correlation − 0.18, p value = 5.1 × 10−3), al-
though it was not significant within any single population
(each population p value > 0.05). There is, however, a
significant negative correlation within the pastoralists
(KT correlation − 0.42, p value = 0.0094) and within the
agropastoralists (KT correlation − 0.22, p value = 0.023).
In addition, we tested for correlation (Kendall tau) be-
tween the regressed BMI values and the abundance of
each bacteria at the taxonomic rank of genus with at
least a 0.1% relative abundance in at least one popula-
tion (Ngenus = 56) (Additional file 2: Table S1R,S). We
observed that 11 bacteria were significantly correlated
with BMI (FDR < 0.01), the most significant of which
are Treponema and Anaerovibrio.
To test whether the between-population differences

in mean BMI (regressed on age and sex) drive the cor-
relation between BMI and α-diversity over all individ-
uals, we constructed “population re-centered” residuals
by subtracting the population mean BMI from each in-
dividual’s BMI, according to their population of origin.
The resulting correlation between the “population
re-centered” BMI residuals and the α-diversity was not
statistically significant (KT p value > 0.1 over all sam-
ples and over African samples only, see Additional file 2:
Table S1Q). Similarly, none of the bacteria taxa at the
rank of genus are significantly correlated with the
population re-centered BMI residuals (FDR > 0.5).
From this observation we conclude that the signifi-
cance of the correlation between BMI and α-diversity
is due to between-population differences. Thus, we
cannot rule out that other host environmental or cul-
tural covariates affecting BMI may be associated with
bacterial diversity and abundance.

Bacterial compositional similarity increases with
geographic proximity and inter-individual relatedness
We investigated the differences in gut bacteria based
on geographic distance and the degree of host genetic
relatedness. A subset of 97 people was densely geno-
typed using the Illumina 5 M SNP array, with at least
eight individuals from each African population, allow-
ing for estimation of their genetic relatedness. To test
whether genetic relatedness had any impact on the dis-
tribution of bacteria within a population, we calculated
the correlation between host genetic relatedness and
bacterial UniFrac distance among all pairs of individ-
uals within each population. Genetic relatedness is
quantified by the estimated identity-by-descent frac-
tion, which is the fraction of the genome that is
estimated to be identical between two people due to a
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shared recent common ancestor. Estimation of the
identity-by-descent fraction assumes a panmictic popula-
tion and is, therefore, reasonably suited for use as a
within-population relatedness metric. To control for
possible differences between sexes, we filtered the pairs of
individuals to only include individuals of the same sex.
Only the Hadza have statistically significant correlations

between identity-by-descent and both unweighted and
weighted UniFrac bacterial distances (Additional file 2:
Table S1T), while the Maasai have a significant correl-
ation between identity-by-descent and unweighted Uni-
Frac bacterial distance, indicating in both cases that
more related individuals have more similar bacterial
composition. Considering all tests, the correlation
between identity-by-descent and unweighted UniFrac
distance is negative in all but one case (unweighted
UniFrac among the Herero). The probability that all seven
weighted UniFrac correlations are negative by chance is
< 0.01 (sign test), while the probability that at least 6 of 7
weighted UniFrac tests are negative by chance is 0.0625
(sign test). Thus, while we detect a statistically significant
correlation between host relatedness and bacterial phylo-
genetic overlap only in the Hadza and the Maasai, there is
a general trend for more related individuals to have more
similar bacterial composition.
In addition, we examined the joint impact of geog-

raphy and host relatedness on bacterial composition
with a linear analysis of UniFrac distances. We modeled
the bacterial phylogenetic distance (UniFrac) between
hosts as a linear function of the host genetic relatedness
and the host geographic separation: Uij~Dij + Gij, where
i and j are index individuals, Uij is the bacterial UniFrac
distance, Dij is the geographic distance between the sam-
pling sites for the individuals (measured in kilometers),
and Gij is the genetic relatedness of individuals. Here, we
quantify Gij with the correlation of normalized and cen-
tered genotype counts [47, 48]. This relatedness measure
is widely used to control for population structure in co-
horts drawn from multiple mating populations (e.g., gen-
etic principal components analysis or as the covariance
structure of random effects in linear-mixed models of
genetic association tests) and, thus, is well suited as a
measure of genetic relatedness when considering differ-
ences across genetically diverse populations.
The genetic relatedness and geographic distance be-

tween sampling sites are highly correlated (Spearman’s
rho correlation − 0.66, p value < 10−10). We therefore
regressed Gij on Dij and used the residuals, G’ij, when
fitting the model Uij~Dij +G’ij to the observed data
using linear least squares. For unweighted UniFrac
bacterial distances, the best fit coefficients of Dij and
G’ij are both significantly non-zero (T test p values
< 0.002, Additional file 2: Table S1U), indicating that
bacterial similarity is greater with closer geographic

proximity and closer relatedness. For weighted bacter-
ial UniFrac distances, only the coefficient of the geo-
graphic separation is significantly non-zero (T test
p value < 0.001, Additional file 2: Table S1U). Although
a linear model can only capture the main trends of the
complex processes that shape the observed distribution
of the gut microbiome, it serves to indicate that bacter-
ial composition varies with geographic proximity and
that the stratification with host relatedness is larger for
bacterial presence/absence data than for abundance
weighted data.

Discussion
We surveyed the bacterial composition of fecal sam-
ples from rural populations in Tanzania and Botswana
and a comparative population from Philadelphia in the
USA. Among the rural Tanzanian and Botswanan
populations, there are population level differences in
bacterial diversity and abundances. We also found cor-
relations between host BMI and both overall microbial
diversity (less diverse microbiota were correlated with
higher BMI) and the abundances of specific taxa. Host
genetic similarity is correlated with more similar bac-
terial composition within the Hadza and Maasai popu-
lations. When comparing across African populations,
we find genetic relatedness is correlated with presence/
absence of gut bacteria, even when accounting for
geographic separation.
The bacterial community diversity we observe be-

tween rural African populations is comparable to that
observed by Gomez et al. [27] between two groups
from the Central African Republic, the BaAka hunter-
gatherers and a neighboring group of Bantu-speaking
agriculturalists. The unweighted UniFrac distances be-
tween the BaAka and the neighboring Bantu is nearly
74% of the mean distance between the US and the Af-
rican cohort, while for weighted UniFrac this ratio is
nearly 70%. The African populations in our cohort are
slightly more phylogenetically diverse based on un-
weighted UniFrac distances (83% of distance between
USA and Africa) and are comparable in terms of
weighted UniFrac distances (68% of distance between
USA and Africa).
Given the difficulty of directly comparing micro-

biome studies that use different amplicons for OTU
measurements, we contextualize our results with
taxa-level meta-analysis from Smits et al. (2017),
which identified four bacterial families and one bac-
terial phylum that primarily associate with traditional
(Prevotellaceae, Spirochaetaceae, Succinivibrionaceae)
or industrialized (Bacteroidaceae,Verrucomicrobia) popu-
lations (Additional file 1: Figures S14, S15; Additional file 2:
Table S1V). Additionally, three of these five taxa (Succini-
virbionaceae, Spirochaetaceae, and Prevotellaceae) were
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highly variable with season. With the inclusion of our
study cohorts, this modified meta-analysis has bacterial
compositional data from 26 populations in 17 countries
(34 cohorts). For the US cohort used in this study, the
mean abundances of the five taxa were within a standard
deviation of the mean values for one or more US cohorts
in the Human Microbiome Project (Additional file 1:
Figures S14, S15; Additional file 2: Table S1V), indicating
that it is not an outlier compared to prior studies.
The relative abundance of Prevotellaceae in the Hadza

from our study was ~ 58%, which is nearly tenfold higher
than the 8% relative abundance of Prevotellaceae found
in the Hadza by Schnorr and colleagues [24], though it
is within a standard deviation of the relative abundance
reported by Smits et al. [31] (~ 38%) (Additional file 1:
Figures S14, S15; Additional file 2: Table S1V). Prior
studies of the Hadza (Smits et al. 2017) [31] and the
Hutterites from the USA [49] indicate that seasonally
volatile gut bacterial taxa correlate with seasonally avail-
able food. The Hadza in our study were sampled
mid-October through early November, which is the late
dry season and the beginning of the wet season, when
there is an average rainfall of 57 mm [50]. Schnorr and
colleagues sampled from the Hadza population in the
rainy season during January [24], when average rainfall
is ~ 146.6 mm [50]. The increased abundance of Prevo-
tellaceae in the Hadza in our study is concordant with
seasonal variation of this taxa reported in Smits et al.
[31]. As with any bacterial taxa and study population,
differences in Prevotellaceae abundance between micro-
biome studies of the Hadza could be affected by use of
different protocols, reagents, and primers.
Fluctuations in short-term diet could also explain

some of the variability seen between microbiome stud-
ies [51] in the Hadza and our other sampled popula-
tions. Although we were not able to get individual or
population level dietary information for our research
participants, we conducted a nutritional literature re-
view to provide a qualitative assessment of contempor-
ary diet in the traditional populations presented in this
study (see Additional file 2: Table S1W and Methods
for extended dietary information). Given the dissimilar-
ity of food types between industrialized and traditional
populations, the compositional similarity between the
Bantu and US is noteworthy and may be reflective of
individual nutritive changes in the Bantu from
Botswana and a shift from traditional to industrialized
diets. It is clear from Fig. 2 that there is heterogeneity
in bacterial abundance profiles within the Bantu, where
roughly half the population has gut bacteria similar to the
other African groups, and the other half has gut bacteria
more similar to the US cohort. We could not identify any
host factors (age, sex, BMI, location) that significantly dis-
tinguish these two groups of Bantu. If we are observing a

population undergoing changes in life styles that impact
gut bacteria, then the changes in gut bacteria are not uni-
form across the population. Future work aimed at pairing
longitudinal gut microbiome research with individual and
population level dietary surveys would be informative for
determining the extent to which shifts in subsistence and
diet affect microbial changes.
Bacteroides has been used to distinguish between de-

veloping (low Bacteroides abundance) and industrial-
ized (high Bacteroides abundance) populations [22–28,
30] and is significantly variable across the African pop-
ulations, with generally higher abundances in Botswa-
nans than in Tanzanians. We find that the gut bacterial
composition of the US population is closer to the Bot-
swanan populations than to any of the Tanzanian popu-
lations. In particular, the US gut bacterial composition
was most similar to the Botswana Bantu agropastoral-
ists, and 12 of the Botswana Bantu agropastoralist
individuals have gut bacteria that are not significantly
different from the US individuals by abundance
weighted composition. The US and Botswana Bantu
agropastoralists also have the two lowest measures of
taxonomic diversity within hosts and two of the highest
measures of inter-individual diversity in this cohort.
Botswana is more economically developed than Tanzania,
reflected in higher yearly per capita gross national income
($15.5 k in Botswana to $1.75 k in Tanzania), and a higher
percentage of Botswanans (57%) than Tanzanians (30%)
live in urban areas [52, 53]. None of the populations in
our study live in an urban setting; sites are ~ 60 km or
more walking distance from the nearest town (see
Additional file 2: Table S1X for more details). It is
possible that there are country-level differences in path-
ogens, sanitation, hygiene practices, transportation ac-
cess, or medical access between Tanzania and Botswana
that impact gut microbiome composition in rural areas.
The Hadza, San, and Sandawe are three current or

former hunter-gatherer populations in various stages of
settlement or transition from their ancestral subsistence
lifestyle. The Sandawe settled into villages and adopted
small-scale agropastoral practices in the mid-1800s
[54]. The Sandawe have the greatest bacterial α-diver-
sity in the cohort, which may be related to their genetic
admixture with neighboring populations and/or their
mix of subsistence practices. Varying subsistence strat-
egies could plausibly increase gut bacterial diversity (1)
neutrally, through the introduction of a wide array of
microbes due to a varied life style and diet, or (2)
selectively, due to bacterial community adaptation to
varying environments. The high Shannon diversity values
in the Sandawe are consistent with the “Intermediate
Disturbance Hypothesis” which proposes diversity of
bacteria is maximized under conditions of fluctuating
environments (e.g., diet in this case) [55, 56].
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The Hadza are unique in this cohort in that they still
largely practice hunting and gathering [57]. Their gut
bacteria are outliers in several respects: (A) they have
the highest abundance of Prevotellaceae and Spiroche-
taceae [24–27, 30], in particular, the genus Treponema
within family Spirochetaceae, which is a common con-
stituent of hunter-gatherer gut microbiomes [24–27,
30] and a catabolizer of fibrous plant materials (cellu-
lose and xylans) that form a large component of Hadza
diets [24], (B) the Hadza are outliers in unweighted
UniFrac PCoA, indicating that their bacteria, in terms
of presence/absence, are phylogenetically the most dis-
similar to other African populations, (C) they and the
Maasai are the only two populations (out of five tested)
with a significantly distinct microbiome between sexes,
(D) the Hadza common gut bacteria are phylogenetic-
ally more homogenous across the population relative to
all other populations in this study, and (E) the
within-population variation in their gut bacteria is cor-
related with the relatedness among individuals, where
more related individuals tend to have more similar bac-
terial composition (both presence/absence and abun-
dance weighted). The bacterial phylogenetic differences
between sexes in the Hadza that we observe corrobo-
rates a previous finding of sex differences in the Hadza
gut microbiome [24], and may be partly attributable to
sexual division of labor and differential food intake
[24]. Hadza men and women have different activity pat-
terns, where men are highly mobile foragers with access
to honey and game meat, while Hadza women forage
for local materials and may engage in more frequent
“snacking” on fiber-enriched foods than men [58, 59].
The Maasai of Tanzania and the Herero of Botswana

are two cattle herding peoples that live in close proxim-
ity to domesticated animals and have a heavy dairy
component to their diet [60]. However, the Maasai and
Herero gut bacteria are not more similar to each other
than to other neighboring populations in their respect-
ive countries. The Maasai, like the Hadza, have a sig-
nificant distinction in bacterial communities between
sexes. Maasai men are in charge of supervising and
herding cattle [60, 61] whereas women traditionally
manage the household, oversee milk production from
animals and milk distribution (or sale), and supervise
small livestock (goats, sheep) [60, 61]. The separation
of labor and the time away from home spent by men
while tending cattle [62] could affect the types and
quantities of food that men eat compared to women.
Across the seven African populations, we find a sig-

nificant negative correlation between α and β-diversity,
which corroborates a trend that has been previously ob-
served between pairs of Western and non-Western popu-
lations [22–28]. Several implications follow from this
general trend: first, the negative correlation between α and

β-diversity exists among a set of non-Western populations
practicing largely traditional subsistence lifestyles, demon-
strating that the correlation is not entirely a Western ver-
sus non-Western phenomenon; second, the correlation is
not associated with the particular subsistence lifestyle; and
third, the correlation is more significant for unweighted
β-diversity than for abundance weighted β-diversity. These
three points, and the fact that the correlation is negative,
are consistent with a neutral, diffusion-limited process
accounting for most phylogenetic differences in gut
microbiome communities between the African popula-
tions in our study. This does not argue against selection
acting on specific bacteria according to their niche role,
only that selection on broad subsistence type does not
appear to determine the overall phylogenetic distance
between populations [63].
The contribution of host genetics to gut microbiome

composition remains an open question, with studies
finding evidence for heritability of relative bacterial
abundances or specific taxa [15, 63–68], and alter-
nately, estimating that host genetics explain only a
minor percentage of microbiome variation [69]. We do
not know whether the observed correlations between
bacterial composition and host genetic similarity that
we find in the within-population analysis of the Hadza
and Maasai, or in the joint analysis of geographic and
relatedness across all population, is tracking differ-
ences in specific genetic factors that mediate interac-
tions with commensal microbiota (e.g., inflammation
response or mucin production genes), or the tendency for
closely related individuals to live and/or work in the same
places and hence have a greater degree of shared environ-
ment compared to unrelated individuals. The bacterial
compositional differences seen between countries, be-
tween populations within a country, and the significant
dependence on the geographic distance between individ-
uals in a linear model, underscore the importance of phys-
ical separation on the distribution of gut bacteria among
population groups. Longitudinal studies may be may be
required to understand whether these correlations are
plausibly due to bacterial dynamics within a population,
while much larger cohorts are required for adequately
powered statistical tests of whether these correlations are
due to heritable host genetic factors.
The functional differences of the predicted metage-

nomic content of the gut microbiomes supports the
hypothesis that there are both country-level and
population-level differences in the distribution of func-
tional pathways among the gut bacteria. We find that
most imputed KEGG pathways that are more enriched
in the USA compared to the two African countries as a
whole are also more enriched in Botswana than in
Tanzania. KEGG pathways with this enrichment pat-
tern include categories that relate to the degradation
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of industrial compounds and by-products, such as
bisphenol, xylene, DDT, and styrene. This pattern pos-
sibly reflects selection for increasing the abundance of
bacteria that can degrade or metabolize environmental
xenobiotic compounds.
The imputed bisphenol degradation pathway also has

highest frequency in the USA, followed by Botswana, then
Tanzania. Bisphenol is a common industrial organic com-
pound used in many plastics and epoxies. The sampled
African populations live far from industrial centers and
arguably have less contact with plastics and industrial
by-products compared to the US individuals; conse-
quently, the frequency pattern of the bisphenol degrad-
ation pathway could indicate that the presences of
bisphenol is influencing the US gut microbiome. A similar
argument applies to the higher frequencies of imputed
styrene degradation and xylene degradation pathways in
the USA compared to Botswana and Tanzania.
Within Africa, we find that Botswana has a higher fre-

quency of these industrial compound degradation path-
ways compared to Tanzania, including imputed DDT
degradation pathways. Interestingly, Botswana, but not
Tanzania, is one of nine countries worldwide that uses
indoor residence spraying of traditional structures for
control of malaria-carrying mosquitos [70, 71]. These
results suggest potential metagenomic adaptation to in-
creased exposure to industrial compounds in western
populations, and to DDT in Botswanans.
There are caveats to interpretation of PICRUSt results;

we do not know with certainty what the sources are that
may explain these differences in imputed functional en-
richment. Additionally, imputed gene content from refer-
ence strains may not adequately capture the gene content
in strains that have diverged due to, for example, horizon-
tal gene transfer and selection (e.g., antibacterial resist-
ance). Shotgun sequencing of the gut bacteria will be
required to directly verify the metagenomic functional
differences observed here and to investigate potentially
novel bacterial strains found in these Africa populations.
The US population sampled here is the only population
from an urban city in our study, which we may reasonably
expect to contain more industrial pollutants in the general
environment than in the environment of any of the popu-
lations we sampled in Africa. Consequently, it would be of
interest to sample populations from Botswana and
Tanzania that reside in major urban centers where there is
more exposure to industrial pollutants, to see if their gut
bacteria are enriched for functions more similar to what
we see in the US population with regard to industrial
by-product degradation and xenobiotic metabolism.

Conclusions
The genetic and cultural diversity of Africans extends
to the taxonomic diversity of their gut microbiomes.

The gut bacteria in Botswana are relatively more simi-
lar to the USA, and a subset of traditional farmers has
gut bacteria nearly indistinguishable from that in the
US cohort. Correspondingly, the phylogenetic diversity
between rural African populations can be as large as
the differences we find between traditional and urban
populations. In general, the regional phylogenetic
distinction between Botswana and Tanzania exceed the
distinction found between subsistence lifestyles. The
factors causing a shift towards western microbiome
compositions remain unknown but appear to have a
regional component that is not entirely due to differ-
ences in agricultural, pastoral, or hunting-gathering
subsistence modes.

Methods
Sampled populations
Ethnic groups, language, sample sizes, subsistence classi-
fications, and sampling coordinates of populations are
listed in Additional file 2: Table S1A. Written informed
consent was obtained from all participants, and ethics/
research approval and permits were obtained from the
following institutions prior to the start of sample collec-
tion: NIMR, COSTECH, and Muhimbili University of
Health and Allied Sciences in Dar es Salaam, Tanzania;
The University of Botswana and the Ministry of Health
in Gaborone, Botswana; IRB approval from the Univer-
sity of Pennsylvania. Samples were collected from
Botswana during the wet season and the start of the dry
season (January–April) and from Tanzania at the end of
the dry season/start of the wet season (October–March).
We recruited 114 adult participants (26 Bantu, 8 Herero,
20 San, 25 Hadza, 12 Sandawe, 12 Maasai, 11 Burunge)
that practiced diverse modes of subsistence (such as
pastoralism, agropastoralism, hunting and gathering, and
mixed hunting and gathering). Demographic information
including age, sex, ethnicity, and ancestry was recorded
(for further participant details see Additional file 2: Table
S1A). We provide a dietary literature review of our sam-
pled populations in Additional file 2: Table S1W. Basic
demographic data and fecal 16S rRNA V1-V2 sequences
for healthy Philadelphians (US cohort) were collected
from prior studies at the University of Pennsylvania
[12, 32, 33]. All fecal and blood samples were extracted,
sequenced, and analyzed using the same laboratory and
computational pipelines, thereby reducing the impact of
batch effects in the cross-population comparisons.
In Tanzania, samples were obtained from the Hadza

hunter-gatherers who live in the Arusha and Shinyanga
regions surrounding Lake Eyasi, the Maasai pastoralists
from the northern Ngorongoro district, and the Bur-
unge agropastoralists and Sandawe former hunter-
gatherers who reside near each other in the Kondoa
district in Central Tanzania (Fig. 1). Each of these
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four ethnic groups has a distinct dietary pattern.
Hadza hunter-gatherers rely on local, natural resources
that are structured by annual and seasonal changes in
rainfall [31]. Specifically, Hadza diets are dominated by
tubers, legumes, berries, baobab fruit, honey, and foraged
plant material [57, 72]. The Sandawe are a former
hunter-gatherer group that settled in villages and began
farming in the nineteenth century. They primarily subsist
on grains, with supplements of tubers and plant material
gathered from the bush. Up until the mid-1800s, the
Sandawe were a semi-nomadic hunter-gatherer popula-
tion living in the savannahs of Tanzania. The Sandawe
have admixed with neighboring populations of diverse
ancestries who migrated into Tanzania within the past
5000 years [73]. The Sandawe also adopted the agropas-
toral subsistence practices of neighboring Bantu-speaking
Turu, which comprises the bulk of their caloric intake,
though they continue to supplement a small portion of
their diet with hunting and gathering [54, 74].The Maasai
are nomadic cattle, sheep, and goat herders living in the
Ngorongoro highlands region. Maasai diets primarily
consist of meat, milk, and blood, which are lactose rich
and high in fat and cholesterol, though they supplement
that diet with maize traded from neighboring groups [75].
The Burunge are settled farmers that also keep livestock,
with a diet heavily dependent on millet and subsidized by
cattle derived dairy and meat.
In Botswana, samples were obtained from western/

northwestern regions from San populations who tradition-
ally have practiced hunting and gathering (Naro, Kaukau,
Ju|‘hoan!, Xoo) and from several agropastoralist popula-
tions (Kgalagadi, Tswana, Mophadima) that are classified
here as “Bantu” based on their shared language family and
broad subsistence practice, and one population, the
Herero, who practice a pastoralist lifestyle. The traditional
diet of San hunter-gatherers is composed of foraged
meat, vegetables, fruits, and nuts, the latter of which
contributed the largest percentage of dietary protein
and calories [76–80]. Some San settlements receive a
substantial component of their food from government
sources [34, 35]. Bantu agropastoralists have diets
mainly composed of sorghum, maize, millet, legumes,
cucurbits (squash and melons), eggs, and seasonally
available fruits in addition to goat, chicken, fish, and
cattle meat [81]. Herero pastoralists have diets based
on beef, milk, and milk products with supplements of
goats, chickens, garden produce, foraged plants and
animals, and bulk grains (especially ground corn) [82].

Sample collection and storage
Participants produced a fecal sample in a sterile con-
tainer that was immediately returned to researchers at
the field site. A midsection sample of stool was har-
vested in a 5 ml container and immediately frozen in

liquid nitrogen. Samples were later aliquoted into
smaller 1.5 ml containers on dry ice in a fume hood to
maximize storage space. The samples were stored at
− 80 °C before transportation to the USA in dry ice,
where it was again stored at − 80 °C until extraction.

Biological sample processing and quantification
16S rRNA gene sequencing and processing for microbiome
sequencing
Total DNA from fecal materials was extracted using a
PSP Spin Stool DNA Plus Kit (Stratec Molecular) with a
modified bead-beating method [83]. PCR and extraction
blanks were used to control for reagent and environ-
mental contamination, and all extractions were con-
ducted in a laminar flow hood, with equipment and
consumables given UV irradiation for a minimum of 30
min prior to use. Eluted DNA was quantified by fluor-
ometry and stored at − 20 °C. PCR reactions were per-
formed in quadruplicate using the Accuprime system
(Invitrogen) and barcoded composite primers with
Illumina adapters to amplify the V1-V2 sections of the
16S rRNA genome (see Additional file 2: Table S1Y for
16S rRNA gene sequencing metadata and PCR condi-
tions). The resulting 300–320 bp products were pooled
and visualized by gel electrophoresis, followed by prod-
uct purification using 1:1 volume of Agencourt AmPure
XP beads (Beckman-Colter). Purified PCR products, in-
cluding extraction and PCR blanks, had their final con-
centration determined with Qubit PicoGreen dsDNA
BR assays (Invitrogen) and were pooled in equal
amounts prior to Illumina Nextera XT library prepar-
ation (processed by the manufacturer’s protocol).
Libraries were multiplexed on the Illumina MiSeq system
and sequenced using 2 × 250 bp cycles. Sequence data
are deposited under project accession PRJNA395034
in the NCBI Sequence Read Archive; sample details
and individual accession numbers are included in the
Additional file 2: Table S1A.

16S rRNA processing and qPCR
In a separate extraction, total DNA from fecal materials
was extracted from samples using a MO BIO PowerSoil
DNA Isolation Kit (MO BIO Laboratories, Carlsbad,
CA). Eight samples from each population were included
save for the Herero, where only three were available,
and the Bantu, where nine were available. No stool
sample was available for the US individuals, and they
were not included in this analysis. Each fecal sample
was individually weighed, with samples ranging from
0.012 to 0.196 g. The samples were then processed ac-
cording to manufacturer’s protocols, and eluted DNA
was quantified by fluorometry and stored at − 20 °C.
Bacterial abundance was quantified by qPCR amplifica-
tion of the V1-V2 region of the 16S rRNA gene, with
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reactions performed in triplicate (25 μL each), using
1:1000 dilutions of DNA template. For qPCR, equal
volumes of purified DNA of all samples were used in
this assay. Primer and probe sequences are as follows:
BSF8 (Forward) qPCR primer—5′-AGAGTTTGATCCTG
GCTCAG-3′, BSR65/17 (Reverse) qPCR primer—5′-TCGA
CTTGCATGTRTTA-3′, Fluorescent dye (5′6 -FAM (Fluor-
escein)), landing sequence, dark quencher (3’ Black Hole
Quencher®-1) 5′– /56-FAM/TAA+CA+C ATG+CA+A
GT+C GA/3BHQ_1/ - 3′. *A + indicates a locked nucleic
acid base. Primers and probes were purchased through
Integrated DNA Technologies (IDT).
Prior research has indicated that the differences be-

tween 16S qPCR copy numbers produced from the
same samples but extracted with both PSP and MoBio
kit were statistically negligible [84]; thus, the MoBio ex-
tracts can serve as an accurate proxy for PSP extracts
for 16S qPCR. The Bantu had a mean 16S rRNA gene
copy number per gram of stool of 1.51 × 109 ± 3.73 ×
108 SEM (standard error of the mean), the Burunge had
8.06 × 109 ± 5.01 × 109 SEM, the Hadza had 1.81 × 109 ±
4.25 × 108 SEM, the Herero had 1.68 × 109 ± 4.73 × 108

SEM, the San had 1.41 × 109 ± 3.27 × 108 SEM, the
Maasai had 1.81 × 109 ± 3.35 × 108 SEM, and the San-
dawe had 1.87 × 109 ± 2.12 × 108 SEM .

OTU clustering
Bacterial 16S rRNA reads were analyzed using the
Quantitative Insights into Microbial Ecology (QIIME)
software package [85]. During the quality-filtering
process, reads were removed from the analysis if they
did not match Golay error-corrected barcode with less
than two mismatches, if the read pairs could not be
joined with an overlapping sequence of less than 35 bp,
if they had a homopolymer sequence (repeated base
call) greater than 6 bp, and if they had more than two
ambiguous base calls (N’s). Operational taxonomic
units (OTUs) were created by single-linkage clustering
the reads using Swarm [86] and removing OTUs com-
prised of only a single or pair of reads. Representative
sequences from each OTU were aligned using the
PyNAST aligner [87], and a phylogenetic tree was in-
ferred using FastTree v. 2.1.3 [88] after applying the
standard Lane mask for 16S sequences. [89] As an add-
itional quality control step, all OTUs were tested for
correlations between the proportional abundance of
the OTU and the post-PCR amplicon concentration of
a sample using the method developed by Jervis-Brady
et al. [90] as implemented in the contam_test program
for R (https://github.com/eclarke/eclectic). A negative
correlation indicates a potential contaminant: an increasing
proportional abundance of that OTU in correlation with
lower sample biomass (as implied by lower amplicon con-
centration) suggests that the increased proportional

abundance of that OTU comes in as part of the reagents,
and is not truly part of the sample. Correlation significance
is assessed using Pearson’s rho, and OTUs with a significant
negative correlation are considered contaminants and re-
moved. Final OTU sequences are listed in Additional file 2:
Table S1Z. Taxonomic assignments were generated using
the Greengenes 16S database v. 13_8 [91] (Additional file 2:
Table S1AA) and OTUs mapping to chloroplast or mito-
chondrial sequences were removed. All OTUs are denoted
by the prefix “denovo” since they are determined without
use of reference sequences. OTU and MRT abundances are
measured as the proportion of the total reads per individual.

Host genotyping and genetic relatedness
DNA was extracted from white blood cells using a salting
out method (Gentra Puregene) and 97 of the 114 African
individuals were genotyped on the Illumina Omni5M
Exome array that includes a small number of indels
and ~ 4.5 million SNPs (see Additional file 2: Table S1A).
In collaboration with the Cancer Genomics Research
laboratory (CGR) at NIH, array intensity data was
clustered and all genotypes were called based on
standard operating procedures using the hg19/37 SNP
coordinates in the Illumina software GenomeStudio.
See Crawford et al. 2017 [92] for further details on
this genotype callset. We retained the segregating
autosomal biallelic single nucleotide polymorphisms
(SNPs) over the 97 individuals, and variants were pruned
to be in approximate linkage equilibrium, r2LD < 0.1, using
plink [93](plink --indep-pairwise 200 kb 20 0.1), leaving
158,891 SNPs for genetic relatedness estimation. From
these sites, we constructed (A) the estimated pairwise
identity-by-descent fraction among all pairs of indi-
viduals from the same population (plink --genome,
see Additional file 3), and (B) a genetic relationship
matrix between all pairs of individuals i and j from the stan-
dardized genotype vectors using the Genome-wide Complex
Trait Analysis (GCTA) software [94] (--make-grm-gz) for
subsequent analyses (see Additional files 4 and 5).

qPCR for Entamoeba histolytica
Primers, probes, and protocols for the qPCR, including
methods for generating a recombinant plasmid con-
taining target E. histolytica sequence to make a stand-
ard curve, were taken from Mejia et al. (2013) [95].
qPCRs were run on a QuantStudio7 Flex Real-Time
PCR system.

Statistical methods
Diversity and richness measurements
Diversity metrics (α and β-diversity) were quantified
using all 17,861 taxonomically mapped OTUs using
QIIME [96, 97]. QIIME was also used to calculate Uni-
Frac distances, which are an estimate of the fraction of
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the total branch length over the bacterial phylogenetic
tree that is not shared by two bacterial communities
[96, 97]. Unweighted UniFrac distance is based on the
presence/absence of bacteria [96], while weighted
UniFrac distance weights the shared branches in the
phylogenetic tree by abundance [97]. Species accumula-
tion curves were calculated using the specaccum func-
tion from the vegan library for R.

Phylogenetic variation among groups
PERMANOVA tests between groups were computed
with Python package scikit-bio (scikit-bio.org), using
50,000 permutations. The PERMANOVA test statistic
is the ratio of between-group to within-group vari-
ance, and is sensitive to whether the mean separation
between groups is larger than the mean variance
within groups.

Principal coordinate analysis
Principle coordinate analysis (PCoA) was computed
using the Python package scikit-bio 0.5.1 (scikit-bio.org).

Analysis of differentially abundant taxa
We used the Analysis of Composition of Microbiomes
(ANCOM) method to detect differentially abundant
taxa between groups [40], as implemented in the
Python scikit-bio 0.5.1 package. The ANCOM method
accounts for the simplex nature of compositional data,
and so does not suffer from spurious negative correla-
tions imposed by the fact that (relative) abundances
across all bacteria must sum to one within a given bac-
terial community. This method tests for taxa that vary
significantly among groups more than a significant
number of the other taxa. Consequently, if a large
number of taxa all vary similarly among the groups,
then none of these will show up as significantly varying
compared to the other taxa. As such, this is a sensitive
test for taxa that vary significantly and in an unusual
way compared to the other taxa. For all tests, we used
the default “one way ANOVA” base test, with a signifi-
cance threshold of 0.05, tau parameter 0.99, and theta
parameter 0.25, and we used the Holm-Bonferroni
multiple testing correction.
For these analyses, we used abundances per mapped

genus that have at least 0.1% mean abundance in at
least one of the eight populations for the between con-
tinent comparison, and at least 0.1% mean abundance
in at least one of the seven African populations for
Africa-only comparisons. Since we are testing for
difference between groups for each taxa, we rescaled
the relative abundance by a constant factor and
re-centered the relative abundances by adding a con-
stant for each taxa, such that the rescaled relative
abundances span from ~1/N to 1, where N is the total

number of samples. The ANCOM analysis tests for dif-
ferences between groups using the logarithm of the
rescaled abundances. Since the logarithm cannot han-
dle zero values, the choice of ~1/N as the minimum
rescaled value avoids this issue. For the between con-
tinent comparison, all individuals are used, N = 126.
For the Africa-only comparison we used N = 114. The
rescaled relative abundances are given by X = (x−A)/
(B−A), where x is the original relative abundance, A =Min
(x)-1/N, and B =Max (x). Note that the rescaling is done
separately when using all samples (N = 126) or the
Africa-only samples (N = 114).

Functional metagenomic analysis
Subsampled reads were subjected to closed reference OTU
picking against the Green Genes reference taxonomy
(Greengenes database, May 2013 version; http://greenge-
nes.lbl.gov) using the pick_closed_reference_otus.py script
in QIIME [85] using 97% identity. Metagenomes from bac-
terial OTUs were imputed with PICRUSt on the online
Galaxy interface (http://huttenhower.sph.harvard.edu/gal-
axy). For each individual and each KEGG pathway (NKEGG

= 328), PICRUSt calculates the cumulative gene count
across all OTUs that overlap the pathway, which are then
normalized into a pathway abundance. The data were ana-
lyzed statistically by using STAMP v. 2.0.6. In this data set,
the highest pathway frequency values are on the order of
0.1–1%, while the smallest non-zero pathway frequencies
are on the order of 10−7 to 10−6%. The Nearest Sequenced
Taxon Index (NSTI), which measures the phylogenetic dis-
tance between observed OTU sequences and the reference,
has a mean and standard deviation of 0.140 and 0.037
across all samples, with 10th and 90th percentiles 0.095
and 0.186 (Additional file 2: Table S1AB). For multiple
(> 2) populations, ANOVA and Tukey-Kramer post-hoc
tests were performed. Two-group comparisons were
done with White’s non-parametric t-test with two-sided
confidence intervals obtained by bootstrapping. Mul-
tiple tests were controlled with FDR correction calcu-
lated by the Benjamini-Hochberg method.
For a given pathway k, the relative abundance

difference between two groups A and B, Rk(A, B), is de-

fined by RkðA;BÞ ¼ XðAÞ−XðBÞ
ðXðAÞþXðBÞÞ=2. Across all pathways k we

find a significant, positive, correlation between Rk(Africa,
U. S.) and Rk(Tanzania, Botswana) (Spearman rank
correlation 0.51, p value < 10−22) (Additional file 2:
Table S1 AC).
PICRUSt relies on the assumption that the bacterial

strains in each sample have the same gene content as
database strains used for the analysis, which can be in-
accurate when strains vary substantially in gene con-
tent. However, it does not appear that the above
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correlation in pathway abundances can be explained by
annotation biases alone. For example, if OTUs from
Tanzania had a lower mapping rate to known taxa
compared to Botswana, then this would results in
lower abundances across all pathways in Tanzania
compared to Botswana; this is not what we observe, as
many pathways have a higher abundance in Tanzania
than Botswana. The above correlation could only be
explained by OTU annotation biases that (A) happen
to impact certain pathways more than others and (B)
have the same mapping biases between Tanzania and
Botswana as between the USA and Africa. While we
cannot rule this out, it would require several biases to
align in direction.

BMI correlation
All of the individuals in our study have BMI measure-
ments, which allowed testing for correlations between
α-diversity and BMI. The BMI values were regressed on
age and sex, and the residuals were tested for correlation
with the Shannon diversity index. The “population
re-centered” BMI residuals are computed as follows: the
mean BMI residual is computed for each population,
and for every individual in this population this value gets
subtracted from their BMI residual.

Linear regression
Linear modeling and least squares fitting of UniFrac dis-
tances as a function of host geographic separation and
host genetic relatedness were computed using the
Ordinary Least Squares routines in the python package
statsmodels.
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