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Abstract: Wind speed modelling has been key to many environmental and 

engineering applications, particularly in environmentally friendly wind 

power generation to meet energy demands. Efficient assessment of wind 

speed at different recurrence intervals requires the choice of a suitable 

statistical distribution and an unbiased method of parameter estimation. 

This study suggests the use of a four parameter Kappa distribution, with its 

parameters estimated using the method of L-moments, to model 

Botswana’s monthly maximum wind speed data at six meteorological 

weather stations. These synoptic weather stations are Gaborone, Sir Seretse 

Khama Airport, Tsabong, Tshane, Gantsi and Maun which are broadly 

spread across the country’s economic activity centres. Reliable wind speed 

quantiles have been obtained for the selected stations and have been found 

to fall within the interval 13.80 to 21.69 m s
−1
. Mean maximum wind 

speeds have been found to range between 12.65 and 14.97 m s
−1
, with 

standard deviations ranging between 1.58 and 2.44 m s
−1
. These results can 

reliably be used by environmentalists and technologists working in the 

energy sector in Botswana. 
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Introduction 

Wind speed is an important factor in many sectors. 
For instance, it is an important parameter in the 
estimation of evapotranspiration for agricultural 
purposes (Valipour and Eslamian, 2014; Valipour, 
2014a; 2014b; 2015a; 2015b; 2015c; 2015d). It is also an 
important factor for engineers in the construction 
industry, who use it to calculate wind uplift loads (Liu, 
1991; Dyrbye and Hansen, 1997; Rosowsky and Cheng, 
1999; Kumar and Stathopoulos, 2000; Zhou et al., 2002). 
In this study, Botswana's wind speed is being studied 
mainly for renewable energy applications (Chiodo, 2013; 
Mukhopadhyay et al., 2014). With the growing rate of 
urbanisation, Botswana’s urban clusters have recently 
been experiencing energy shortages. Therefore, it has 
become necessary to explore alternative, 
environmentally friendly energy sources such as wind 
mills to meet localised demands. This would reduce 
the use of energy from fossil fuel resources, the main 
sources of greenhouse gases. For efficient wind power 
evaluation, it is essential to model wind speed using a 
suitable statistical distribution that is able to represent 

the observations accurately and the parameters of this 
distribution need to be estimated using an appropriate 
technique (Parida, 1999; Shabri and Jemain, 2010; 
Chiodo, 2013; Mukhopadhyay et al., 2014). Although 
researchers have suggested the use of Weibull 
distribution (Akpinar and Akpinar, 2004; Azad et al., 
2014), this may not be applicable in semi-arid regions 
where wind speeds are highly variable. In view of 
this, a four parameter Kappa distribution with its 
parameters estimated using the L-moments method 
has been used to model Botswana's monthly maximum 
wind speeds. This distribution encompasses a family 
of distributions that can effectively describe the 
peculiarity in data variability (Hosking, 1986; 1990; 
1994; Parida, 1999; Shabri and Jemain, 2010). When 
used for parameter estimation, the L-moments 
procedure gives unbiased parameter estimates, hence 
yields unbiased wind speed quantiles that can be used 
to develop growth curves at various recurrence 
intervals. Planners, designers and practicing engineers 
could easily make use of this information to plan and 
produce wind power efficiently (Chiodo, 2013; 
Mukhopadhyay et al., 2014). 
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Modelling Botswana’s monthly maximum wind 

speed data for using a four parameter Kappa distribution, 

with its parameters estimated using the method of L-

moments has never been done. This research is therefore 

the first of its kind in this country and uses one of the 

best techniques currently available in the world. 

Materials and Methods 

Data 

Historical monthly maximum wind speed data at 10m 

height for the synoptic weather stations Maun, Gantsi, 

Tsabong, Sir Seretse Khama Airport (SSKA), Tshane 

and Gaborone (Fig. 1), were obtained from the Botswana 

Department of Meteorological Services. The stations 

were selected because of their data availability and 

because they are the centres of economic activities. The 

lengths of the data sets vary from station to station, but 

all fall within the period 1960 to 2005. 

Methods 

There are two aspects that make statistical modelling 

successful. The first aspect is the choice of an 

appropriate statistical distribution that can adequately 

describe the observations and the second one is the 

choice of an appropriate parameter estimation technique, 

which yields quantiles with the least bias and the least 

mean squared error. A good statistical model should be 

able to meet both the descriptive and predictive ability 

aspects (WMO, 1989), such that more meaningful 

answers can be deduced from it. Two parameter (2-P) 

distributions such as the Normal, Exponential, Gamma 

or Gumbel can explain the descriptive ability aspect 

well, but fail to account for the predictive ability aspect 

(Parida, 1999). Three parameter (3-P) distributions such 

as the Generalised Pareto, Generalised Extreme Value 

and Generalised Normal distributions are better in their 

predictive and descriptive ability aspects, but sometimes 

encounter problems with the conditions of separation. 

Hosking (1986; 1990; 1994) showed that the method 

of Probability Weighted Moments (Greenwood et al., 

1979) or the method of L-moments for parameter 

estimation gives unbiased parameter estimates and 

hence unbiased quantiles, even when the choice of the 

parent distribution was inappropriate. This means that 

one should choose a 3-P distribution rather than a 2-P 

distribution, since it yields the least biased quantiles 

with the  least  mean squared error. Parida (1999) 

found that the use of a four parameter (4-P) 

distribution such as a 4-P Kappa can overcome the 

problem of inappropriate 2-P or 3-P distributions. This 

distribution can decrease to either of them, depending 

on the magnitude of the parameters. Therefore, a 4-P 

Kappa distribution is able to account for the 

descriptive ability aspects of the given data set very well.  

 
 
Fig. 1. Location of the six selected weather stations 
 
Table 1. Family of distributions generated by the 4-P 

generalised Kappa distribution with different values of 
h and k (adapted from Parida (1999)) 

h k Distribution 

1 ≠ 0 3-P Generalised Pareto Distribution 
0 ≠ 0 3-P Generalised Extreme Value Distribution 
-1 ≠ 0 3-P Generalised Logistic Distribution 
1 0 2-P Exponential Distribution 
0 0 2-P Gumbel Distribution 
-1 0 2-P Logistic D1istribution 
1 1 2-P Uniform Distribution (one form of 
  Normal Distribution) 
0 1 2-P Reverse Exponential Distribution  
  (i.e., 1 - F(x) is exponential) 

 

When its parameters are estimated using an L-moment 

procedure, the predictive ability aspects can also be 

adequately accounted for and the resulting quantiles 

would be quite reliable. We modelled the monthly 

maximum wind speed data from different sites in 

Botswana using a 4-P Kappa distribution, with its 

parameters estimated using L-moment methods, to 

obtain unbiased quantiles at each selected site and at the 

desired recurrence intervals (T). A 4-P Kappa 

distribution has a cumulative distribution function 

(Hosking and Wallis, 1997): 

 
1/ 1/

( ) [1 {1 ( ) / } ]
k h

F x h k x u α= − − −  (1) 
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where, u is the location parameter, α is the scale 

parameter, h and k are shape parameters, which 

implicitly include the continuous limits at h = 0 and k = 

0. F(x) is the probability of non exceedance and can also 

be expressed as F(x) = 1-1/T. Special cases of Equation 

1 can take the form of different distribution functions 

with different values of h and k as shown in Table 1. 

The quantile function x(F) of the 4-P Kappa 

distribution can be expressed as: 

 

1 ( )
( ) 1

k
h

F x
x F u

k h

α
  − 

= + −  
   

 (2) 

 

This equation is the inverse of the cumulative 

distribution function (Equation 1). The first four L-

moments for the data sample of size n arranged in 

ascending order are obtained using the expressions 

(Hosking and Wallis, 1997): 

 

1 (1:1)E Xλ  =    (3a) 

 

2 (1:2) (2:2)(1 / 2)E X Xλ  = −   (3b) 

 

3 (1:3) (2:3) (3:3)(1 / 3) 2E X X Xλ  = − +   (3c) 

 

4 (1:4) (2:4) (3:4) (4:4)(1 / 4) 3 3E X X X Xλ  = − + −   (3d) 

 

where, λ1, λ2, λ3 and λ4 are related to location, scale, 

shape and peakedness respectively. In Equation 3b, the 

connotations (1:2) and (2:2) mean the first and second 

large values respectively, in a sample size of two drawn 

from the entire observations made at a station. 

Appropriate connotations are used in the other equations 

in a similar manner. It is convenient to present L-

moments as L-moment ratios since their ratios measure 

the shape of a distribution independently of its scale of 

measurement. Dimensionless third and fourth L-moment 

ratios tr, are defined as: 
 

2
/ , r  3,  4

r r
t λ λ= =  (4) 

 
where, t3 is the L-coefficient of skewness (L-Sk), t4 is the 

L-coefficient of kurtosis (L-Ku). The ratio of L-

coefficient of variation (L-Cv) is defined as: 
 

2 2 1
/t λ λ=  (5) 

 

The L-moment ratios t3 and t4 are functions of only 

the shape parameters h and k (Hosking, 1986; 1990; 

1994; Parida, 1999). The parameters h and k are 

restricted by conditions below (Equation 6a to 6d): 

1k > −  (6a) 
 

0 1if  h then hk< > −  (6b) 
 

1h > −  (6c) 
 

/ 1.38 1k h+ > −  (6d) 
 

Existence of the L-moments is ensured by Equation 

6a and 6b, while their uniqueness is ensured by Equation 

6c and 6d. The first step of parameter estimation based on 

L-moment methods at a given station involves obtaining 

solutions for h and k that best describe t3 and t4 in the L-

moment ratio diagram and also satisfying Equation 6d. 

For practical purposes, the interval h ≥ -1 is the most 

useful one, while k = (1-3 t3)/(1+ t3) is the equation that is 

used to calculate k (Hosking, 1986; 1990; 1994). These 

estimated values of h and k are used to estimate values of 

the parameters u and α in Equation 2. 

Results and Discussion 

Estimated values of the mean maximum wind speeds 

for each station and their standard deviations, the period 

of the data, the location parameter u, the scale parameter 

α, the shape parameters h and k of the 4-P Kappa 

distribution are shown in Table 2. The mean maximum 

wind speeds varied between 12.65 and 14.97 m s
−1
, with 

their standard deviations varying between 1.58 and 2.44 

m s
−1
. Scrutinizing the values of h and k in Table 2, it 

can be seen that only Tshane has approximately h = -1 

and k = 0, suggesting that the underlying distribution is 

closer to the two parameter logistic distribution by Table 

1. Three of the other stations have approximately h = 0 

and k ≠ 0, suggesting that the underlying distribution of 

their data is closer to the 3-P geneneralized extreme 

value distribution. 

The estimated parameters of the 4-P Kappa 

distribution were substituted into Equation 2 to obtain 

estimates of wind speed quantiles (Park et al., 2001) for 

each station, corresponding to the recurrence intervals 

(T):10, 20, 50, 100, 200 and 500 years. These recurrence 

intervals were converted to the Gumbel reduced variate 

using Equation 7 (Hosking and Wallis, 1997; Fowler and 

Kilsby, 2003) 

 

( ( ))Y Ln Ln F= − −  (7) 

 
where, Ln is the natural logarithm and F is the non-

exceedance probability. The computed wind speed 

quantiles were used to draw the growth curves 

presented in Fig. 2, with the Gumbel reduced variate 

on the horizontal axis. The Gumbel reduced variates 

2.3, 3.0, 3.9, 4.6, 5.3 and 6.2 (on the horizontal axis of 

Fig. 2), correspond to the recurrence intervals (T): 10, 

20, 50, 100, 200 and 500 years respectively. 
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Fig. 2. Growth curves of estimated wind speed quantiles (m/s) for Gaborone, Tsabong, Tshane, Maun, SSKA and Gantsi 
 
Table 2. Wind speed statistics and parameters of 4-P Kappa distribution at 6 stations in Botswana 

    Parameters of 4-P Kappa distribution 
Station Mean Standard  ----------------------------------------------------------------------- 

name  maximum (m/s) Deviation (m/s) Data period Location (u) Scale (α) k h 

Gaborone 13.33 2.44 1962-1997 0.96 0.13 0.20 -0.07 
Tsabong 14.97 1.71 1960-2002 0.89 0.21 0.34 0.12 
Tshane 12.65 1.71 1960-2005 0.89 0.13 0.02 -0.80 
Maun 13.34 1.58 1965-1990 1.01 0.12 0.10 -0.42 
SSKA 13.21 1.58 1984-2004 1.02 0.14 0.25 0.00 
Gantsi 13.38 1.72 1965-2003 0.86 0.09 0.11 -0.43 

 
Table 3. Estimated wind speed quantiles (m/s) compared with the observed values at the six stations in Botswana, for recurrence 

intervals T = 10 years and T = 20 years 

 T = 10 years  T = 20 years 
 ------------------------------------------------- --------------------------------------------------- 
Station name Estimated Observed Estimated Observed 

Gaborone 15.97 15.42 16.72 17.99 
Tsabong 18.38 16.45 19.34 19.02 
Tshane 14.96 15.42 16.10 15.42 
Maun 16.64 15.42 17.51 16.96 
SSKA 16.71 15.42 17.40 17.48 
Gantsi 13.80 15.42 14.46 15.42 

 
The estimated wind speed quantiles at all the stations fall 

within the range 13.80 to 21.69 m s
−1
, but the growth 

curves vary from station to station. The growth curve for 

Tsabong has the highest wind speed quantiles, ranging 

between 18.38 and 21.69 m s
−1
, while Gantsi has the 

growth curve with the lowest wind speed quantiles, 

ranging between13.80 and 16.82 m s
−1
. Variations in 

wind speeds (hence variations in growth curves) can be 

attributed to variations in the local conditions or 

surroundings (e.g., buildings, vegetation and other 

topographical features) of each station (Wegley et al., 

1980; Larsson, 1986; Oke, 1987; Moses, 2007). 

Variations in wind speeds can also be attributed to 

weather systems that influence the country's weather. 

The influence of these weather systems depends on how 

near or far they are from the stations. It is worth noting 

that the weather in Botswana is influenced by synoptic 

scale weather systems such as the Indian ocean high 

pressure cell, the Atlantic ocean high pressure cell, 

surface lows, frontal systems, cut-off lows, Inter 

Tropical Convergence Zone (ITCZ), high pressure cells, 

easterly and westerly troughs. To check whether or not 
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the estimated wind speed quantiles corresponded to the 

observations at each station, the wind quantiles at the 

recurrence intervals T = 10 and 20 years were compared 

with the observed wind speeds at the respective stations 

(Table 3). Suppose that the observations were X1, X2, ..., 

XN, where X1 < X2 ... < XN, with N being the number of 

observations in the sample. The Weibull plotting formula 

(Shaw, 1983) was used to relate the observed wind 

speeds at T = 10 years and at T = 20 years, to the 

estimated wind speed quantiles:  

 

(1 1/ ) ( 1)i T N= − × +  (8) 

 

where, i is the rank of the wind speed observation in the 

ordered data sample. At T = 10 years, the differences 

between the estimated wind speed quantiles and the 

observations range between 0.55 m s
−1
 (Gaborone) and 

1.93 m s
−1
 (Tsabong), while these differences at T = 20 

years range between 0.08 m s
−1
 (SSKA) and 1.27 m s

−1
 

(Gaborone). The small magnitudes of these differences 

indicate that the estimated wind speed quantiles 

correspond well to the observations, which indicates that 

the growth curves presented in Fig. 2 are reliable. In 

view of this, the growth curves are useful information to 

the professionals in the energy sector who are concerned 

with environmentally friendly alternate energy sources 

such as wind power production.  

Conclusion 

In the recent past, Botswana has been highly 

dependent on energy imports. This has made it necessary 

to explore alternative energy sources such as wind mills 

to meet localised demands. For wind power applications, 

it is crucial to model wind speeds using an appropriate 

statistical distribution that can adequately describe the 

observations. In addition, the parameters of such a 

distribution need to be estimated using an appropriate 

technique. Monthly maximum wind speed data for 

Gaborone, Sir Seretse Khama Airport, Tsabong, Tshane, 

Gantsi and Maun have been modelled using a four 

parameter Kappa distribution based on L-moment 

procedure, which has made it possible to obtain reliable 

wind speed quantiles at recurrence intervals 10, 20, 50, 

100, 200 and 500 years. Growth curves have been drawn 

to display the estimated wind speed quantiles. All the 

growth curves have wind speed quantiles falling within 

the range 13.80 to 21.69 m s
−1
. A comparison between 

the estimated wind speed quantiles at the recurrence 

intervals T = 10 and 20 years and the observations 

corresponded well. Mean maximum wind speeds for 

each selected station have also been computed. They 

have been found to vary between 12.65 and 14.97 m s
−1
, 

with their standard deviations varying between 1.58 and 

2.44 m s
−1
. The results of this study provide valuable 

information for many environmental and engineering 

sectors, which include environmentally friendly wind 

power production. The high correspondence between the 

estimated wind speed quantiles and the observations 

implies that the results of the study can be extended to 

other regions of the country with climates similar to 

those of the selected stations. To improve the results of 

the study or to reduce uncertainties, it is recommended 

that in similar future studies, reanalysis data should be 

used to extrapolate the wind data to longer-term data 

(Schwartz and George, 1999; Brower et al., 2013; 

Jimenez et al., “n.d.”). Different reanalysis data sets will 

have to be compared to identify the most reliable one. 

Acknowledgement 

The authors appreciate the University of Botswana’s 
office of research and development for supporting this 
research. The Botswana Department of Meteorological 
Services is acknowledged for availing the data. Thanks 
also to Dr E. Bennitt for improving the quality of the 
language in this paper. 

Author’s Contributions 

Oliver Moses: Conceptualised the research, 
organised ideas, requisition and analysis of the data, 
results interpretation and article write up.  

Bhagabat Prasad Parida: Participated in the 
conceptualisation and organisation of ideas, data 
analysis, interpretation of the results, participated in the 
article write up.  

Ethics 

The two authors have read and approved the 

manuscript and give the assurance that no part of this 

original research article is being considered for 

publication in whole or in part elsewhere. 

References 

Akpinar, E.K. and S. Akpinar, 2004. Statistical analysis 

of wind energy potential on the basis of the Weibull 

and Rayleigh distributions for Agin-Elazig, Turkey. 

J Power Energy, 218: 557-565. 

 DOI: 10.1243/0957650042584357 

Azad, A.K., M.G. Rasul, M.M. Alam, S.M.A. Uddin and 

S.K. Mondal, 2014. Analysis of wind energy 

conversion system using Weibull distribution. Proc. 

Eng., 90: 725-732. 

 DOI: 10.1016/j.proeng.2014.11.803 

Chiodo, E. 2013. Wind speed extreme quantiles 

estimation. Proceedings of the International 

Conference on Clean Electrical Power, Jun. 11-13, 
IEEE Xplore Press, Alghero, pp: 760-765. 

 DOI: 10.1109/ICCEP.2013.6586944 



Oliver Moses and Bhagabat Prasad Parida / American Journal of Applied Sciences 2016, 13 (6): 773.778 

DOI: 10.3844/ajassp.2016.773.778 

 

778 

Dyrbye, C. and S.O. Hansen, 1997. Wind Loads on 
Structures. 1st Edn., John Wiley and Sons, 
Chichester, ISBN-10: 0471956511, pp: 13. 

Fowler, H.J. and C.G. Kilsby, 2003. A regional 
frequency analysis of United Kingdom extreme 
rainfall from 1961 to 2000. Int. J. Climatol., 23: 
1313-1334. DOI: 10.1002/joc.943 

Greenwood, J.A., J.M. Landwehr, N.C. Matalas and 
J.R. Wallis, 1979. Probability weighted moments: 
Definition and relation to parameters of several 
distributions expressable in inverse form. Water 
Resour. Res., 15: 1055-1064. 

 DOI: 10.1029/WR015i005p01049 
Hosking, J.R.M., 1994. The four-parameter Kappa 

distribution. IBM J. Res. Develop., 38: 251-258. 
DOI: 10.1147/rd.383.0251 

Hosking, J.R.M., 1990. L-moments: Analysis and 
estimation of distributions using linear combinations 
of order statistics. J. Royal Stat. Soc., 52: 105-124. 

Hosking, J.R.M. and J.R. Wallis, 1997. Regional 
Frequency Analysis: An Approach Based on L-
Moments. 1st Edn., Cambridge University Press, 
United Kingdom, ISBN-10: 0521430453, pp: 242.  

Hosking, J.R.M., 1986. The theory of probability 
weighted moments. IBM Res. Report RC 12210.  

Jimenez, B., K. Moennich, J. Rey and F. Durante, “n.d.”. 
Use of different globally available long-term data sets 
and its influence on expected wind farm energy yields. 

Kumar, K.S. and T. Stathopoulos, 2000. Wind loads on 
low building roofs: A stochastic perspective. J. Struc. 
Eng., 126: 944-956. DOI: 10.1061/(ASCE)0733-
9445(2000)126:8(944), 944-956 

Larsson, F., 1986. Wind Resources in Botswana. 1st 
Edn., Ministry of Mineral Resources and Water 
Affairs, Gaborone, pp: 5. 

Liu, H., 1991. Wind Engineering: A Handbook for 
Structural Engineers. 1st Edn., Prentice Hall, 
Englewood Cliffs, ISBN-10: 0139602798, pp: 209. 

Brower, M.C., M.S. Barton, L. Lledo and J. Dubois, 
2013. A study of wind speed variability using global 
reanalysis data. AWS Truepower, Inc. 

Moses, O., 2007. Study of stochastic and statistical 
behaviour of some climatic parameters in Botswana. 
MSc Thesis, University of Botswana, Botswana. 

Mukhopadhyay, S., D. Dash, A. Mitra, P. Bhattacharya, 
2014. A comparative study between seasonal wind 
speed by Fourier and Wavelet analysis. 

Oke, T.R., 1987. Boundary Layer Climates. 1st Edn., 
Psychology Press, ISBN-10: 0415043190, pp: 435. 

Parida, B.P., 1999. Modelling of Indian summer 
monsoon rainfall using a four-parameter Kappa 
distribution. Int. J. Climatol., 19: 1389-1398. 

 DOI: 10.1002/(SICI)1097-
0088(199910)19:12<1389::AID-JOC435>3.0.CO;2-T 

Park, J.S., H.S. Jung, R.S. Kim and J.H. Oh, 2001. 
Modelling summer extreme rainfall over the Korean 
Peninsula using Wakeby Distribution. Int. J. 
Climatol., 21: 1371-1384. DOI: 10.1002/joc.701 

Rosowsky, D.V. and N. Chen, 1999. Reliability of light-

frame roofs in high-wind regions. II: Reliability 

analysis. J. Struc. Eng., 125: 725-739. 

 DOI: 10.1061/(ASCE)0733-9445(1999)125:7(734), 

734-739 

Schwartz, M.N. and R.L. George, 1999. On the use of 

reanalysis data for wind resource assessment. 
National Renewable Energy Laboratory. 

Shabri, A. and A.A. Jemain, 2010. LQ-moments: 
Parameter estimation for kappa distribution. Sains 
Malaysiana, 39: 845-850. 

Shaw, E.M., 1983. Hydrology in Practice. 1st  Edn., Van 

Nostrand Reinhold, Wokingham, 

 ISBN-10: 0442305656, pp: 569. 

Valipour, M., 2014a. Comparative evaluation of 

radiation-based methods for estimation of potential 

evapotranspiration. J. Hydrol. Eng. 

 DOI: 10.1061/(ASCE)HE.1943-5584.0001066, 

04014068 

Valipour, M., 2014b. Use of average data of 181 

synoptic stations for estimation of reference crop 

evapotranspiration by temperature-based methods. 

Water Resour Manage, 28: 4237-4255. 

 DOI: 10.1007/s11269-014-0741-9 

Valipour, M., 2015a. Evaluation of radiation methods to 

study potential evapotranspiration of 31 provinces. 

Meteorol. Atmos. Phys., 127: 289-303. 

 DOI: 10.1007/s00703-014-0351-3 

Valipour, M., 2015b. Investigation of Valiantzas’ 

evapotranspiration equation in Iran. Theor. Applied 

Climatol., 121: 267-278. 

 DOI: 10.1007/s00704-014-1240-x 

Valipour, M., 2015c. Temperature analysis of reference 

evapotranspiration models. Meteorol. Applic., 22: 

385-394. DOI: 10.1002/met.1465 

Valipour, M., 2015d. Study of different climatic 

conditions to assess the role of solar radiation in 

reference crop evapotranspiration equations. Arch. 

Agronomy Soil Sci., 61: 679-694. 

 DOI: 10.1080/03650340.2014.941823 

Valipour, M. and S. Eslamian, 2014. Analysis of 

potential evapotranspiration using 11 modified 

temperature-based models. Int. J. Hydrol. Sci. 

Technol. DOI: 10.1504/IJHST.2014.067733 
Wegley, H.L., J.V. Ramsdell, M.M. Orgill and R.L. Drake, 

1980. A Siting Handbook for Small Wind Energy 
Conversion Systems. 1st Edn., WindBooks, 
Richland, ISBN-10: 0880160039, pp: 55. 

WMO, 1989. Statistical distributions for flood frequency 

analysis: Secretariat of the World Meteorological 

Organization. 
Zhou, Y., T. Kijewski and A. Kareem, 2002. Along-

wind load effects on tall buildings: Comparative 
study of major international codes and standards. J. 
Struc. Eng., 128: 788-796. 

 DOI: 10.1061/(ASCE)0733-9445(2002)128:6(788) 


