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In this paper a method is presented which enables the solution of the equation of motion of the slider-crank
mechanism. Expansion of functions into Fourier series is used in this method, whereby the solution of the equation
of motion is also obtained in the form of Fourier series. This method enables also the determination of the
coefficient of speed fluctuation of the slider-crank mechanism. The method creates the basis for an analysis of the
influence of various factors, e.g. the working conditions or the construction parameters of the system, on the

coefficient of speed fluctuation.

1 INTRODUCTION

The slider-crank mechanism is one of the most
frequently applied planar linkages in engineering
[1]. It is a special configuration of the four-bar
linkage with a slider replacing an infinitely long
output link. The most popular application of this
mechanism is the internal combustion engine,
wherein the input force is the gas pressure on the
piston. The same mechanism is widely used in
agricultural and food-processing machines as well as
in packing machines. In all these machines. but
especially in agricultural machines, the occurrence
of variable resistance of relatively high values
creates a significant problem. This causes
considerable fluctuation in the motion of the whole
system. The coefficient of speed fluctuation is one
measure of such fluctuations.

In order to calculate the coefficient of speed
fluctuation (which is a criterion for assessing the
performance of many machines) it is necessary to
determine) the maximum and minimum values of
the machine speed. either by calculation or
measurement. Measurements can be done only on a
real machine after its manufacture and it is
undoubtedly a great advantage to be able to calculate
the speed maxima during design. To do so. the
equation of motion of the mechanism must be
solved. This is a typical dynamics problem. in the
category of “forward dynamics” problems [2]. It may
also be described as “time-response” analysis. where
the geometry. mass and inertia of the mechanism are
known functions of position. as are the external
loads, driving forces and torques. Time response
analysis produces kinematic information about the
linkage (including velocities of different links) as
functions of position or time.

The problem discussed in this paper is a typical
dynamic case of time-response analysis. It requires

the solution of the equation of motion of the slider-
crank mechanism. which is a non-linear second
order differential equation. Methods exist to solve
such equations numerically. Among the many
available numerical integration techniques, onc of
the most widely used is the Runge-Kutta numerical
analysis routine [7,8,9]. Although this method was
originally invented for first-order equations. it is
possible to apply it to higher-order systems. For the
Runge-Kutta method to be applied for such a system.
the higher-order equation is first transformed into a
serious of first-order equations. These are then
solved one at a time. using the results of each
previous integration as the input for the next one.

However. a problem with the application of the
Runge-Kutta method. as for any other numerical
method. to the equations of motion of a mechanism
is that the initial conditions may vary. Such methods
require that the solution process be repeated for each
set of conditions.. This poses a general difficulty in
applying the analysis to a practical mechanism. The
present paper addresses the initial value problem by
introducing a method of solving the equation of
motion based on the method of small parameters and
on Fourier expansions.

2 EQUATION OF MOTION OF THE
SLIDER-CRANK MECHANISM

In order to determine the physical model of the

slider-crank mechanism (Fig. 1) the following

assumptions have been made:

- clearances arc absent in kinematic pairs.

- the performance of slider-crank does not
affect the drive.

- link masses are concentrated at their centres
of gravity.

6. links are rigid.
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Figure 1: Physical model of a slider-crank
mechanism.

Using Lagrange equations, the following equation of
motion of the slider-crank mechanism was derived:
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m; - the mass of the link (i=1, 2.3)

G, - theweightofthe link (i=1,2, 3):

I, - the length of the link (i =1, 2),
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M, - the driving moment,

P - the force acting on the piston (generally

periodic with period 27).

3 SOLUTION OF THE EQUATION OF
MOTION

The equation of motion of the slider-crank
mechanism is a non-linear ordinary differential
equation. It is inconvenient to solve this equation by
analytical methods because of the complicated form
of the equation itself and of the coefficients
occurring in it. The method based on the expansions
of functions into Fourier series [3] is introduced in
this paper.

The equation of motion (1) could be also written in
the following form:

.1 .
1(9)9+51'(9)92:1\4¢+Afb(9) C))
where,

dl - d6 . d°@0
I'g)=—— 0O0=— 0=—
(9) de di dr’

0 is the generalised co-ordinate (angle of crank
rotation), 1(0) is the mass moment of inertia referred
to the crank (it is determined by the expression (2)),
M, is the driving torque (assumed as a constant
value), My(0) is the braking torque referred to the
crank (determined by the relation (3)). The
expressions 1(0) and My(0) are periodic functions of
the variable O: their periods are 2n. These functions
can be presented in the following form [3]:

1(0)=1,+1(0) (5)

My(0)=M,y,+ My(6) (6)

where,
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Applying the expressions (5) and (6), equation (4)
can be written in the following form:
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where expressions evidently depending on the co-
ordinate © are arranged on the right hand side of the
equation. They determine the deviations of the
functions 1(0) and My(0) from the mean values of I,
and M,,, i.e. they are expressions causing motion
fluctuation of the system in steady state. Assuming
that motion fluctuation is a small value, a small
parameter (3) can be introduced on the right side of
the equation [4.5,6] giving,
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Changing the variables,
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the equation (11) was obtained:
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The above equation is a. first order non-linear
differential equation, where the independent variable
is the angle of crank rotation 0, and the unknown is
the angular velocity o. The solution of this equation
will enable the determination of the ®(0) function.
In the steady state the solution of ®(0) is a periodic
function with period 2n or integer multiple of 2.
The solution will be assumed to be of the following
form [4,5,6]:

0(0)=wotSw (0)+5°w ,(0)+... (12)

where, ®, is the constant mean crank angular
velocity resulting from the drive, ®,(0) are periodic
functions of the period 2m (i=1, 2, ...). Substituting
(12) into equation (11) will give a general equation
in the following form.

L0, +60,+6%, +..\6o} + 8%} +..)-A1_ ~M,, =
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By grouping the expressions of the same power of

small parameter and using only the elements up to
the 3 square, the following expressions are obtained:
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Equation (13a) enables the determination of the
driving torque M,, that should be applied to the
crank to overcome the load:

M.=-M, (14)

Equations (13b) and (13c) constitute a set of
equations enabling the determination of successive
approximate solutions ®,(0) and ®,(0) to the
function w(0).

In order to solve the equation which determines the
first approximation, the right side of equation (13b)
was expanded into a Fourier series:

-7'(0)(07:"’»71,(9) *Z(Lckcosk6+ Lk sink&) (15)
k=1
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(the constant term of the expansion equals zero).
Through equations (13b) and (15) the following was
obtained:

Iowow’,=Z(LCJ‘cosk9+[,,'ksink0) (16)
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Expression (16) allows us to determine the periodic
solution with the period 2 of equation ( 13b):
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Equation (13c) can be solved similarly. The right
hand side of the equation was expanded into a
Fourier series:
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In this case the constant expression is also equal to
zero, and. because of the periodicity o, and I(8) the
following relations occur;
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Periodic solution with 2n period of equation (13c)
has the following form:

= A”rk : Af’sk
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Substituting in equation (12) the value of the small
parameter & = 1 [456] and taking into
consideration the expressions determining ®,(6) and
®2(0), i.e. equations (18) and (20). the final formula
was obtained which shows the dependence of
angular velocity on the angle of rotation:

(0)=@,+ Z[ Lok N sin k@ - Lsk Nk cos kﬂ) 21
k=1 o o k oo
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In the above calculation only the two first
approximations of angular velocity ©,(8) and ®»(0)
were taken into account. If greater accuracy is
required, formulae can be developed analogously.
determining subsequent approximations connected
with higher powers of the small parameter 6.

In formula (21) an infinite sum of expressions
occurs. which are the expansions into the Fourier
series of appropriate functions. The accuracy of the
calculations also depends on the number of
expressions in this sum that are taken into account
in specific calculations.

It should be stressed that for expansion of a function
into the Fourier series it is not necessary to know the
mathematical relation determining this function. It
is enough to know the values of this function at
some points. Thus it is possible to use the Runge's
scheme for determination of the expansion
coefficients. This makes it possible to carry out the
above analysis in the case when no mathematical
formula determining the braking torque My(0) is
available. This has a great significance in machines
for which it is difficult to give an analytical formula
for the function My(0).

4 DETERMINATION OF THE
COEFFICIENT OF SPEED
FLUCTUATION

As it appears from the formula determining the
relation between the angular velocity and the angle
of rotation (21), the velocity changes around the
mean value ©, during a stable cycle motion. The
coefficient of speed fluctuation is determined by the
formula [1]:

CJ: @ max ~ @ min (22)
[

where, ®ma is the value of maximum velocity during
the working cycle, ®mn is the value of minimum
velocity, o, is the mean value. Thus for the
determination of the coefficient of speed fluctuation
the maximal and minimal values of the angular
velocity should be determined. This may be done by
comparing the values of angular velocities for
different angles of rotation obtained by the formula
(21). It is obvious that a computer should be used to
perform such calculations.

5 DISCUSSION
The method here described may now be compared

with less general numerical methods of solving the
equation of motion of a slider-crank mechanism to
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obtain its coefficient of fluctuation. It is quite
obvious that the mechanism will be in periodic
motion with certain mean values of velocity or
acceleration during its cycle but the initial
conditions are usually not known. The “zero” initial
conditions cannot be used, since the analysis is done
for the steady-state situation and not for the initial
acceleration or final deceleration of the system. The
method that avoids this problem is a method of
small parameters, by which the solution is sought
around a certain value. The case presented seemed
to be ideal for this particular method. The steady
mean value of the crank angular velocity resulting
from the drive is usually known, and so it is required
only to look for deviations from this mean value
(equation (12)). This method leads to a set of
equations presented as (13) in this paper. Equations
(13b) and (13c¢) are non-linear first order differential
equations and a numerical routine may be used in
order to solve them. The Runge-Kutta method might
be used at this point, taking the result of integration
of equation (13b) as the input to equation (13c)).
However, expansion of functions into Fourier series
provides a more straightforward method that
converts these equations into a simple form easy to
integrate. Once this expansion is done the solution is
easy to obtain. The method presented overcomes the
difficulty with the initial conditions of the
mechanical system in a steady-state situation and
also avoids the laborious numerical integration of
the differential equations.

6 CONCLUSIONS

A method for the solution of the equation of motion
of slider-crank mechanisms has been presented. The
method uses the concept of small parameters and
also requires the expansion of functions by Fourier
series. Hence. the relation between the angular
velocity and the angle of rotation of the crank, which
is the solution of the equation of motion, is obtained
in the form of a Fourier series. It is thus possible to
calculate the coefficient of speed fluctuation for any
slider-crank mechanism. A computer is needed for
the application of this method. The method creates
the basis for an analysis of the influence of various
factors, e.g. the working conditions or the
construction parameters of the system, on the
coefficient of speed fluctuation.

REFERENCES

1. Shigley, J.E., J.J. Uicker, Theory of Machines
and Mechanisms, McGraw Hill, New York,
USA, 1980.

2. Norton, R.L., Design of Machinery: An
Introduction to the Synthesis and Analysis of



20

Mechanisms and Machines, WCB/McGraw
Hill. 1999.

Spiegel. MR.. Advanced Mathematics,
McGraw Hill, New York, USA, 1971,

Cunnigham, W.J., Introduction to non-linear
analysis, McGraw Hill, New York, USA, 1958.

Minorski, N., Non-linear oscillations, Van
Nostrand. Princeton N.Y., USA, 1962.

Nayfeh, A.H.. Perturbation methods, Wiley.

BOTSWANA JOURNAL OF TECHNOLOGY - OCTOBER 2001

New York, USA. 1973.

% Carnahan. B., HA. Luther, J.O. Wilkes,
Applied Numerical Methods. John Wiley &
Sons, Inc.., New York, 1969.

8. Dahlquist, G., A. Bjorck. Numerical Methods,
Prentice-Hall Inc., Englewood Cliffs, New
Jersey. 1974.

9. Shoup. T.E.. A Practical Guide to Computer
Methods for Engineers, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey. 1979.



