Please use this identifier to cite or link to this item: http://hdl.handle.net/10311/1336
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRobdera, Mangatiana A.-
dc.date.accessioned2015-02-27T05:26:40Z-
dc.date.available2015-02-27T05:26:40Z-
dc.date.issued2013-06-
dc.identifier.citationRobdera, Mangatiana A. (2014) Unified to vector valued integration, IJFAOTA, Vol.5, Issue 2, pp. 119-139en_US
dc.identifier.issn0975-2919-
dc.identifier.urihttp://hdl.handle.net/10311/1336-
dc.description.abstractWe introduce a natural and more flexible approach to the definition of vector valued integral that will completely forgo any measurability assumption, strengthen the existing various classical concepts of integral, and provide a continuous thread tying the subject matter together. As applications, we obtain extensions of the Lebesgue convergence theorems, the Dvoretsky-Rogers theorem, and the Orlicz-Pettis theorem.en_US
dc.language.isoenen_US
dc.publisherPushpa Publishing House, www.pphmj.comen_US
dc.rightsit is available under Creative Commons Licenseen_US
dc.subjectvector valued Henstock-Kurzweil integralen_US
dc.subjectLebesgue-Bochner integralen_US
dc.titleUnified approach to vector valued integrationen_US
dc.typePublished Articleen_US
dc.rights.holderPushpa Publishing Houseen_US
dc.linkhttp://www.pphmj.com/abstract/7873.htmen_US
Appears in Collections:Research articles (Dept of Mathematics)

Files in This Item:
File Description SizeFormat 
13-IJFAOTA-00502-119.pdf121.6 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.