Please use this identifier to cite or link to this item: http://hdl.handle.net/10311/1355
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRobdera, Mangatiana A.-
dc.date.accessioned2015-03-25T12:49:33Z-
dc.date.available2015-03-25T12:49:33Z-
dc.date.issued2014-08-
dc.identifier.citationRobdera, Mangatiana A. (2014) A new general approach to vector valued stochastic integration, International Journal of Modeling and Optimization, Vol. 4, No. 4, pp. 299-304en_US
dc.identifier.issn2010-3697-
dc.identifier.urihttp://hdl.handle.net/10311/1355-
dc.description.abstractWe use an extended theory of integral that generalizes the integration of vector valued functions with respect to non-negative, monotonic,countably subadditive set functions, in order to introduce a new approach to stochastic integral. With such an approach, we will explore the possible extension of the theory of stochastic integration to the more general setting of integrable processes taking values in normed vector spaces. We show that our approach makes applications possible to stochastic processes that are not necessarily square integrable, nor even measurable. Such an extension generally consolidates the typical and classical results obtained for the standard scalar case.en_US
dc.language.isoenen_US
dc.publisherInternational Journal of Modeling and Optimization, www.ijmo.orgen_US
dc.rightsavailable under Creative Commons Licenseen_US
dc.subjectVector integrationen_US
dc.subjectbanach spacesen_US
dc.subjectstochastic processesen_US
dc.subjectmartingalesen_US
dc.subjectconditional expectationen_US
dc.subjecttensor producten_US
dc.titleA new general approach to vector valued stochastic integrationen_US
dc.typePublished Articleen_US
dc.rights.holderInternational Journal of Modeling and Optimizationen_US
dc.linkhttp://www.ijmo.org/index.php?m=content&c=index&a=show&catid=45&id=444en_US
Appears in Collections:Research articles (Dept of Mathematics)

Files in This Item:
File Description SizeFormat 
389-M1001.pdfMain article558.72 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.