Please use this identifier to cite or link to this item: http://hdl.handle.net/10311/1622
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVanderpost, Cornelis-
dc.contributor.authorRingrose, Susan-
dc.contributor.authorMurray-Hudson, Mike-
dc.date.accessioned2017-03-10T13:15:04Z-
dc.date.available2017-03-10T13:15:04Z-
dc.date.issued2015-07-09-
dc.identifier.otherhttp://www.ub.bw/ojs/index.php/bnr/article/view/400en_US
dc.identifier.urihttp://hdl.handle.net/10311/1622-
dc.description.abstractIn data-poor regions, especially when they are large and remote, the measurement of biodiversity presents considerable challenges. This paper explores a way of estimating regional patterns of biodiversity through a combination of land-cover field mapping, remote sensing and interpretative GIS techniques. The results show spatial variations of potential biodiversity in the remote Ngamiland region of Botswana, with areas of higher variability of land-cover classes indicative of higher degrees of biodiversity. The methodology is potentially replicable in other data-poor regions in developing countries.en_US
dc.formatapplication/pdfen_US
dc.language.isoenen_US
dc.publisherUniversity of Botswana; www.ub.bwen_US
dc.sourceBotswana Notes and Records; Vol 45, pp. 96-109en_US
dc.titleEstimating Biodiversity in Remote Areas, Using Existing Vegetation Data: The Ngamiland Regionen_US
dc.type.ojsPeer-reviewed Articleen_US
Appears in Collections:OJS imports

Files in This Item:
File Description SizeFormat 
400-1247-1-PB.pdf949.1 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.