UBRISA

View Item 
  •   Ubrisa Home
  • Okavango Research Institute (ORI)
  • Research articles (ORI)
  • View Item
  •   Ubrisa Home
  • Okavango Research Institute (ORI)
  • Research articles (ORI)
  • View Item
    • Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Remote sensing-derived hydroperiod as a predictor of floodplain vegetation composition

    Thumbnail
    View/Open
    Abstract (38.97Kb)
    Date
    2014-02-13
    Author
    Murray-Hudson, M.
    Wolski, P.
    Cassidy, L.
    Brown, M.T.
    Thito, K.
    Kashe, K.
    Mosimanyana, E.
    Publisher
    Springer Link; https://link.springer.com
    Link
    https://link.springer.com/article/10.1007/s11273-014-9340-z
    Rights
    Springer Link
    Type
    Published Article
    Metadata
    Show full item record
    Abstract
    Characterising hydroperiod and vegetation for flood-pulsed wetlands is a critical first step towards understanding their ecology. In large, data-poor wetlands such as Botswana’s Okavango Delta, quantifying hydrology and ecology presents great logistic and financial challenges, yet relationships between hydrology and floodplain ecology are essential inputs to management. This paper describes an approach to improving ecological understanding by seeking relationships between archival remote sensing data and floodplain vegetation data. We produced a high spatial resolution (30 × 30 m) time series of annual flood frequency from Landsat 5TM imagery for the period 1989–2009. A second, lower spatial resolution (250 × 250 m) series of monthly flood extent was developed from a band 1 (0.62–0.67 μm) threshold of MODIS (MOD09Q1) imagery for the period 2000–2012. Vegetation composition and abundance was sampled in 30 floodplain sites, using a modified Braun-Blanquet approach. Interpreted flood extent from MODIS was 92 % accurate compared to the Landsat interpretation, and 89 % accurate when assessed against field data. Three major classes of floodplain vegetation were identified from ordination and cluster analysis: Occasionally flooded savanna, Seasonally flooded grassland, and Seasonally flooded sedgeland. Relationships identified between hydroperiod and vegetation communities were tested against five validation sites, in four of which indicator species occurrence was predicted with ≥60 % accuracy. The methods used are simple, objective, repeatable and inexpensive. Relating floodplain vegetation to hydrological history provides a means of predicting shifts in species composition and abundance for given changes in hydrology.
    URI
    http://hdl.handle.net/10311/1954
    Collections
    • Research articles (ORI) [270]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of UBRISA > Communities & Collections > By Issue Date > Authors > Titles > SubjectsThis Collection > By Issue Date > Authors > Titles > Subjects

    My Account

    > Login > Register

    Statistics

    > Most Popular Items > Statistics by Country > Most Popular Authors