UBRISA

View Item 
  •   Ubrisa Home
  • Faculty of Science
  • Environmental Science
  • Research articles (Dept of Environmental Science)
  • View Item
  •   Ubrisa Home
  • Faculty of Science
  • Environmental Science
  • Research articles (Dept of Environmental Science)
  • View Item
    • Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Decrease in hydraulic conductivity in saturated soil columns and particle release associated with self-filtration in saturated soil columns

    Thumbnail
    View/Open
    Dikinya_Geoderma_2008.pdf (1.363Mb)
    Date
    2008
    Author
    Dikinya, O.
    Hinz, C.
    Aylmore, G.
    Publisher
    Elsevier http://www.linkinghub.elsevier.com/retrieve/pii/S0016706108001365
    Type
    Published Article
    Metadata
    Show full item record
    Abstract
    The dynamics of the process of self-filtration in soil columns have been evaluated for two soils with different structural cohesion (Balkuling agricultural soil and a mining residue) by carrying out experiments focusing on microscopic particle behaviour during filtration. Soil column experiments were set up to simultaneously measure changes in hydraulic gradients (ΔH/ΔL) along the columns and outflow particle sizes and concentrations during pressure leaching with solutions of 100, 10 and 1 mmol/L NaCl and deionised water. The lowest ionic strength has resulted in more reduced hydraulic conductivity and relatively more release of colloids associated with hydrodynamic shear and dispersion. Steady increases in hydraulic gradient (ΔH/ΔL) and corresponding decreases in relative saturated hydraulic conductivity (K/Ko) with time were observed for both soils and follow similar trends at all column depths. The most severe increases in ΔH/ΔL and decreases in K/Ko always occurred near the inlet to the columns and the decline gradually decreased along the column. The decrease in K/Ko and increase in ΔH/ΔL were clearly influenced by the size as well as the concentration of migrating particles in the porous medium. The finer mobile particles in the mining residue were clearly more readily self-filtered at the lower concentration than the larger Balkuling soil particles producing more rapid increases in ΔH/ΔL and decreases in K/Ko. This was attributable to more effective self-filtration and more pore clogging probably due to increased development of the diffuse double layer, swelling and dispersion within the soil matrix at these concentrations.
    URI
    http://hdl.handle.net/10311/488
    Collections
    • Research articles (Dept of Environmental Science) [65]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of UBRISA > Communities & Collections > By Issue Date > Authors > Titles > SubjectsThis Collection > By Issue Date > Authors > Titles > Subjects

    My Account

    > Login > Register

    Statistics

    > Most Popular Items > Statistics by Country > Most Popular Authors