Show simple item record

dc.contributor.authorDikinya, O.
dc.contributor.authorLehmann, P.
dc.contributor.authorHinz, C.
dc.contributor.authorAylmore, G.
dc.date.accessioned2010-06-08T10:12:21Z
dc.date.available2010-06-08T10:12:21Z
dc.date.issued2008
dc.identifier.citationDikinya, O. et al (2008) Using a pore-scale model to quantify the effect of particle re-arrangement on pore structure and hydraulic properties, Hydrological Processes, Vol. 21, pp. 989-997en_US
dc.identifier.issn0885 6087
dc.identifier.urihttp://hdl.handle.net/10311/490
dc.description.abstractA pore-scale model based on measured particle size distributions has been used to quantify the changes in pore space geometry of packed soil columns resulting from a dilution in electrolyte concentration from 500 to 1 mmol l 1 NaCl during leaching. This was applied to examine the effects of particle release and re-deposition on pore structure and hydraulic properties. Two different soils, an agricultural soil and a mining residue, were investigated with respect to the change in hydraulic properties. The mining residue was much more affected by this process with the water saturated hydraulic conductivity decreasing to 0Ð4% of the initial value and the air-entry value changing from 20 to 50 cm. For agricultural soil, there was little detectable shift in the water retention curve but the saturated hydraulic conductivity decreased to 8Ð5% of the initial value. This was attributed to localized pore clogging (similar to a surface seal) affecting hydraulic conductivity, but not the microscopically measured pore-size distribution or water retention. We modelled the soil structure at the pore scale to explain the different responses of the two soils to the experimental conditions. The size of the pores was determined as a function of deposited clay particles. The modal pore size of the agricultural soil as indicated by the constant water retention curve was 45 μm and was not affected by the leaching process. In the case of the mining residue, the mode changed from 75 to 45 μm. This reduction of pore size corresponds to an increase of capillary forces that is related to the measured shift of the water retention curve.en_US
dc.language.isoenen_US
dc.publisherWiley http://www.interscience.doi.wiley.com/10.1002/hyp.6299en_US
dc.subjectpore structureen_US
dc.subjectparticle size distributionen_US
dc.subjectparticle re-arrangementen_US
dc.subjecthydraulic propertiesen_US
dc.subjectsaturated hydraulic conductivityen_US
dc.subjectsoil water retentionen_US
dc.titleUsing a pore-scale model to quantify the effect of particle re-arrangement on pore structure and hydraulic propertiesen_US
dc.typePublished Articleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record