Show simple item record

dc.contributor.authorNechibvute, A.
dc.contributor.authorChawanda, A.
dc.contributor.authorLuhanga, P.
dc.date.accessioned2013-11-22T09:24:11Z
dc.date.available2013-11-22T09:24:11Z
dc.date.issued2012
dc.identifier.citationNechibvute, A. et al. (2012) Finite element modeling of a piezoelectric composite beam and comparative performance study of piezoelectric materials for voltage generation, ISRN Materials Science, Vol. 2012, No. 2012en_US
dc.identifier.issn2090-6080 (Print)
dc.identifier.issn2090-6099 (Online)
dc.identifier.urihttp://hdl.handle.net/10311/1174
dc.description.abstractA comparative study of the traditional PZT ceramics and new single crystals is critical in selecting the best material and optimization of transducer design for applications such as conversion of ambient vibrations into useful electrical energy. However, due tomaterial and fabrication costs and the need for rapid prototyping while optimizing transducer design, primary comparisons can be based on simulation. In this paper, the COMSOL Multiphysics finite element package was used to study the direct piezoelectric effect when an external load is applied at the free end of a piezoelectric composite beam. The primary output parameters such as electric potential and electric field were studied as a function of the input strain and stress. The modeling is presented for the relatively new single crystal lead magnesium niobate-lead titanate (PMN32) and three different lead zirconate titanate ceramics (PZT-5A, PZT-5H, and PZT-4). Material performance was assessed by using a common geometry and identical excitation conditions for the different piezoelectric materials. For each material, there are three analyses performed, namely, static, eigenfrequency, and transient/time-dependent analysis. Comparative results clearly suggest that the new crystal material PMN32 is capable of outperforming presently useing piezoelectric ceramics for voltage generation.en_US
dc.language.isoenen_US
dc.publisherInternational Scholarly Research Network, http://www.hindawi.com/isrn/materials.science/en_US
dc.titleFinite element modeling of a piezoelectric composite beam and comparative performance study of piezoelectric materials for voltage generationen_US
dc.typePublished Articleen_US
dc.linkhttp://www.hindawi.com/isrn/materials.science/2012/921361/en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record